Skip to main content
Log in

Morphological Evolution and Growth Kinetics of Interfacial Cu6Sn5 and Cu3Sn Layers in Low-Ag Sn-0.3Ag-0.7Cu-xMn/Cu Solder Joints During Isothermal Ageing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The morphological evolution and growth kinetics of interfacial Cu6Sn5 and Cu3Sn intermetallic compound (IMC) layers between Cu substrates and Sn-0.3Ag-0.7Cu-xMn (x = 0 wt.%, 0.02 wt.%, 0.05 wt.%, 0.1 wt.%, and 0.15 wt.%) (SAC0307-xMn) solders were investigated. After ageing, the uneven scallop-like morphology of Cu6Sn5 transforms into a layer-like morphology, and the Cu3Sn morphology remains layer-like. Kirkendall voids at the Cu/Cu3Sn interface and in the Cu3Sn layer are observed at high ageing temperatures. The Cu6Sn5 layer predominantly governs the growth of the total IMC layer at low ageing temperatures, whereas the Cu3Sn layer primarily influences the total IMC layer at high ageing temperatures. The growth of the Cu6Sn5 and Cu3Sn layers fits a power–law relationship with an exponent between 0.44 and 0.82, indicating that IMC growth is primarily controlled by diffusion but may also be affected by interfacial reactions. The activation energies and interdiffusion coefficients of the Cu6Sn5 and Cu3Sn layers were determined. The addition of Mn nanoparticles strongly affected the growth of the Cu6Sn5 layer but weakly impacted the growth of the Cu3Sn layer, particularly at low ageing temperatures. Adding Mn nanoparticles to the SAC0307 solder can evidently increase the activation energy of the Cu6Sn5 layer, reduce the atomic diffusion rate, and inhibit the excessive growth of the Cu6Sn5 IMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Liu, F. Sun, Y. Liu, and X. Li, J. Mater. Sci. Mater. Electron. 25, 2627 (2014).

    Article  Google Scholar 

  2. A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, and M. Ragab, Mater. Sci. Eng. A 608, 130 (2014).

    Article  Google Scholar 

  3. D.X. Luo, S.B. Xue, and S. Liu, J. Mater. Sci. Mater. Electron. 25, 5195 (2014).

    Article  Google Scholar 

  4. M. Yang, Y.H. Ko, J. Bang, T.S. Kim, C.W. Lee, and M. Li, Mater. Charact. 124, 250 (2017).

    Article  Google Scholar 

  5. N. Mookam and K. Kanlayasiri, J. Mater. Sci. Technol. 28, 53 (2012).

    Article  Google Scholar 

  6. K. Kanlayasiri, M. Mongkolwongrojn, and T. Ariga, J. Alloys Compd. 485, 225 (2009).

    Article  Google Scholar 

  7. N. Mookam and K. Kanlayasiri, J. Alloys Compd. 509, 6276 (2011).

    Article  Google Scholar 

  8. X. Yan, K. Xu, J. Wang, X. Wei, and W. Wang, Solder Surf. Mt. Tech. 28, 215 (2016).

    Article  Google Scholar 

  9. F. Cheng, F. Gao, J. Zhang, W. Jin, and X. Xiao, J. Electron. Mater. 46, 3424 (2011).

    Google Scholar 

  10. L.C. Tsao, S.Y. Cheng, C.W. Chen, and T.Y. Chen, Mat. Sci. Eng. A 658, 159 (2016).

    Article  Google Scholar 

  11. R.W. Wu, L.C. Tsao, and R.S. Chen, J. Mater. Sci. Mater. Electron. 26, 1858 (2015).

    Article  Google Scholar 

  12. K. Kanlayasiri and K. Sukpimai, J. Alloys Compd. 668, 169 (2016).

    Article  Google Scholar 

  13. H. Wang, S. Xue, and J. Wang, J. Mater. Sci. Mater. Electron. 28, 8246 (2017).

    Article  Google Scholar 

  14. J. Wu, S. Xue, J. Wang, J. Wang, and S. Liu, J. Mater. Sci. Mater. Electron. 28, 10230 (2017).

    Article  Google Scholar 

  15. Y. Gu, X. Zhao, Y. Li, Y. Liu, Y. Wang, and Z. Li, J. Alloys Compd. 627, 39 (2015).

    Article  Google Scholar 

  16. Y.M. Leong and A.S.M.A. Haseeb, Materials 9, 522 (2016).

    Article  Google Scholar 

  17. D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, and F.X. Che, J. Electron. Mater. 41, 2631 (2012).

    Article  Google Scholar 

  18. W. Liu, N.C. Lee, A. Porras, M. Ding, A. Gallagher, A. Huang, S. Chen, and J. C. Lee, Electronic Components and Technology Conference (2009), pp. 994–1007.

  19. L.W. Lin, J.M. Song, Y.S. Lai, Y.T. Chiu, N.C. Lee, and J.Y. Uan, Microelectron. Reliab. 49, 235 (2009).

    Article  Google Scholar 

  20. Y. Tang, S.M. Luo, K.Q. Wang, and G.Y. Li, J. Alloys Compd. 684, 299 (2016).

    Article  Google Scholar 

  21. G.Y. Li, X.D. Bi, Q. Chen, and X.Q. Shi, J. Electron. Mater. 40, 165 (2011).

    Article  Google Scholar 

  22. W.L. Chiu, C.M. Liu, Y.S. Haung, and C. Chen, Mater. Lett. 164, 5 (2016).

    Article  Google Scholar 

  23. C.E. Ho, T.T. Kuo, C.C. Wang, and W.H. Wu, Electron. Mater. Lett. 8, 495 (2012).

    Article  Google Scholar 

  24. L. Zhang and L.L. Gao, J. Alloys Compd. 635, 55 (2015).

    Article  Google Scholar 

  25. I.E. Anderson, J.W. Walleser, J.L. Harringa, F. Laabs, and A. Kracher, J. Electron. Mater. 38, 2770 (2009).

    Article  Google Scholar 

  26. C.C. Pan, C.H. Yu, and K.L. Lin, Appl. Phys. Lett. 93, 061912 (2008).

    Article  Google Scholar 

  27. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (London: Chapman & Hall, 1981).

    Google Scholar 

  28. R.E. Reed-Hill, Physical Metallurgy Principles (Boston: PWS, 1972).

    Google Scholar 

  29. L.C. Tsao, J. Alloys Compd. 509, 2326 (2011).

    Article  Google Scholar 

  30. L.C. Tsao, J. Alloys Compd. 509, 8441 (2011).

    Article  Google Scholar 

  31. X. Deng, G. Piotrowski, J.J. Williams, and N. Chawla, J. Electron. Mater. 32, 1403 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Project of Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme, China (Grant No. 2016), the Project of Guangdong Province Support Plans for Top-notch Youth Talents, China (Grant No. 2016TQ03N704), the Pearl River S&T Nova Program of Guangzhou, China (Grant No. 201610010157), and the Outstanding Young Teacher Project of Guangdong Province Universities and Colleges, China (Grant No. YQ2015093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Luo, S., Li, Z. et al. Morphological Evolution and Growth Kinetics of Interfacial Cu6Sn5 and Cu3Sn Layers in Low-Ag Sn-0.3Ag-0.7Cu-xMn/Cu Solder Joints During Isothermal Ageing. J. Electron. Mater. 47, 5913–5929 (2018). https://doi.org/10.1007/s11664-018-6481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6481-5

Keywords

Navigation