Skip to main content
Log in

Electrochemical Performance of Nano-SnO2 Anode with Carbonized Carbon Nanotubes Paper as Host

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A 3-dimensional carbonized multi-walled carbon nanotube (MWCNT) paper was used as the host of nano-tin oxide (SnO2) for lithium-ion batteries (LIBs). The cellulose fibers were fully mixed with MWCNTs in water. Then, the paper was obtained via vacuum filtration. Carbonization was carried out in a vacuum furnace at 1460°C. SnO2 slurry was coated on the carbonized MWCNT paper (CMP). Scanning electron microscopy (SEM) was utilized to observe the anode electrode. The images of SEM indicated that the nano-SnO2 was embedded into the holes of the porous CMP collector. This contributed the increase of contact interface area of the nano-SnO2 and the collector and the significantly reduced interface resistance. Electrochemical tests showed that the initial discharge capacity reached 1745 mAh g−1 with a coulumbic efficiency (CE) of 70.39% at a current density of 50 mA g−1. The composite electrode still maintained a reversible capacity of 753 mAh g−1 with a CE of 98% at a current density of 200 mA g−1 after 100 cycles. These marvelous composite electrodes exhibited a promising future for the next generation of LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Zhao, S. She, X. Ji, W. Jin, A. Dang, H. Li, and Z. Zhou, J. Alloys Compd. 708, 500 (2017).

    Article  Google Scholar 

  2. N. Zhang, C. Chen, X. Yan, Y. Huang, J. Li, J. Ma, and D.H. Ng, Electrochim. Acta 223, 39 (2017).

    Article  Google Scholar 

  3. P.L.S.G. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon, Nature 407, 496 (2000).

    Article  Google Scholar 

  4. S.W. Kim, D.H. Seo, X. Ma, G. Ceder, and K. Kang, Adv. Energy Mater. 2, 710 (2012).

    Article  Google Scholar 

  5. J.W. Fergus, J. Power Sources 195, 939 (2010).

    Article  Google Scholar 

  6. M.S. Wang, Z.Q. Wang, Z.L. Yang, Y. Huang, J. Zheng, and X. Li, Electrochim. Acta 240, 7 (2017).

    Article  Google Scholar 

  7. P. Lian, J. Wang, D. Cai, L. Ding, Q. Jia, and H. Wang, Electrochim. Acta 116, 103 (2014).

    Article  Google Scholar 

  8. H. Zhang, Y. Huang, S. Hu, Q. Huang, C. Wei, W. Zhang, and A. Hao, Electrochim. Acta 176, 28 (2015).

    Article  Google Scholar 

  9. I. Elizabeth, R.B. Mathur, P.H. Maheshwari, B.P. Singh, and S. Gopukumar, Electrochim. Acta 176, 735 (2015).

    Article  Google Scholar 

  10. L. Noerochim, J.Z. Wang, S.L. Chou, D. Wexler, and H.K. Liu, Carbon 50, 1289 (2012).

    Article  Google Scholar 

  11. X. Wang, X. Li, X. Sun, F. Li, Q. Liu, Q. Wang, and D. He, J. Mater. Chem. 21, 3571 (2011).

    Article  Google Scholar 

  12. C.K. Chan, X.F. Zhang, and Y. Cui, Nano Lett. 8, 307 (2008).

    Article  Google Scholar 

  13. Z. Wang and L. Zhou, Adv. Mater. 24, 1903 (2012).

    Article  Google Scholar 

  14. D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J.C. Jumas, and J.M. Tarascon, J. Mater. Chem. 17, 3759 (2007).

    Article  Google Scholar 

  15. H.B. Wu, J.S. Chen, H.H. Hng, and X.W.D. Lou, Nanoscale 4, 2526 (2012).

    Article  Google Scholar 

  16. Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, and H.M. Cheng, Nano Energy 1, 107 (2012).

    Article  Google Scholar 

  17. H. Li, Q. Wang, L. Shi, L. Chen, and X. Huang, Chem. Mater. 14, 103 (2002).

    Article  Google Scholar 

  18. D. Deng, M.G. Kim, J.Y. Lee, and J. Cho, Energy Environ. Sci. 2, 818 (2009).

    Article  Google Scholar 

  19. L. Noerochim, J.Z. Wang, S.L. Chou, H.J. Li, and H.K. Liu, Electrochim. Acta 56, 314 (2010).

    Article  Google Scholar 

  20. M.S. Wang, Z.Q. Wang, Z.L. Yang, Y. Huang, J. Zheng, and X. Li, Electrochim. Acta 240, 7 (2017).

    Article  Google Scholar 

  21. H. Zhang, H. Song, X. Chen, J. Zhou, and H. Zhang, Electrochim. Acta 59, 160 (2012).

    Article  Google Scholar 

  22. D. Zhou, X. Li, L.Z. Fan, and Y. Deng, Electrochim. Acta 230, 212 (2017).

    Article  Google Scholar 

  23. S. Yang, H. Song, and X. Chen, J. Power Sources 173, 487 (2007).

    Article  Google Scholar 

  24. X.W. Lou, C.M. Li, and L.A. Archer, Adv. Mater. 21, 2536 (2009).

    Article  Google Scholar 

  25. F. Wang, G. Yao, M. Xu, M. Zhao, Z. Sun, and X. Song, J. Alloys Compd. 509, 5969 (2011).

    Article  Google Scholar 

  26. B. Zhang, X. Yu, C. Ge, X. Dong, Y. Fang, Z. Li, and H. Wang, Chem. Commun. 46, 9188 (2010).

    Article  Google Scholar 

  27. N. Li, H. Song, H. Cui, and C. Wang, Electrochim. Acta 130, 670 (2014).

    Article  Google Scholar 

  28. Y. Li, X. Lv, J. Lu, and J. Li, J. Mater. Chem. C. 114, 21770 (2010).

    Google Scholar 

  29. G.L. Xu, S.R. Chen, J.T. Li, F.S. Ke, L. Huang, and S.G. Sun, J. Electroanal. Chem. 656, 185 (2011).

    Article  Google Scholar 

  30. X. Yang, C. Wei, C. Sun, X. Li, and Y. Chen, J. Alloys Compd. 693, 777 (2017).

    Article  Google Scholar 

  31. X. Yang, C. Li, G. Zhang, and C. Yang, J. Mater. Sci. 50, 6649 (2015).

    Article  Google Scholar 

  32. X. Yang, H. Huang, Z. Li, M. Zhong, G. Zhang, and D. Wu, Carbon 77, 275 (2014).

    Article  Google Scholar 

  33. I. Elizabeth, R.B. Mathur, P.H. Maheshwari, B.P. Singh, and S. Gopukumar, Electrochim. Acta 176, 735 (2015).

    Article  Google Scholar 

  34. X. Zhang, X. Huang, X. Geng, X. Zhang, L. Xia, B. Zhong, and G. Wen, J. Electroanal. Chem. 794, 15 (2017).

    Article  Google Scholar 

  35. X.G. Sun, Z.H. Liu, N. Li, X.Y. Wu, Y.Y. Nie, Z.P. Pang, L.F. Yue, and H. Tang, NANO 11, 1650120 (2016).

    Article  Google Scholar 

  36. D. Zhou, W.L. Song, X. Li, and L.Z. Fan, Electrochim. Acta 207, 9 (2016).

    Article  Google Scholar 

  37. H.P. Cong, S. Xin, and S.H. Yu, Nano Energy 13, 482 (2015).

    Article  Google Scholar 

  38. L. Li, A. Kovalchuk, and J.M. Tour, Nano Res. 7, 1319 (2014).

    Article  Google Scholar 

  39. C.F. Chen, M.X. Lu, D.B. Sun, Z.H. Zhang, and W. Chang, Corrosion 61, 594 (2005).

    Article  Google Scholar 

  40. Y. Jiang, T. Yuan, W. Sun, and M. Yan, Appl. Mater. Inter. 4, 6216 (2012).

    Article  Google Scholar 

  41. F. Wang, H. Jiao, E. He, S. Yang, Y. Chen, M. Zhao, and X. Song, J. Power Sources 326, 78 (2016).

    Article  Google Scholar 

Download references

Funding

This study was funded by Nanchang University Postgraduate Innovation Fund (College Project) (Research of graphitized carbon nanotube conductive paper as current collector on Lithium Titanate Battery) and Jiangxi education fund (KJLD13006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Nie, Y., Sun, X. et al. Electrochemical Performance of Nano-SnO2 Anode with Carbonized Carbon Nanotubes Paper as Host. J. Electron. Mater. 47, 5850–5857 (2018). https://doi.org/10.1007/s11664-018-6426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6426-z

Keywords

Navigation