Skip to main content
Log in

Non-Monochromatic 3D Optical Simulation of HgCdTe Focal Plane Arrays

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Combined optical and electrical simulations of infrared HgCdTe-based focal plane arrays under broadband, non-monochromatic illumination are critically relevant to the design of small-volume detectors with sub-wavelength pixel pitches. We present an efficient technique, based on a single finite-difference time-domain electromagnetic simulation, that provides the photogeneration rate profile due to realistic, broadband optical sources, avoiding multiple monochromatic simulations. This technique is applied to assess the effects of the temperature of blackbody optical sources on quantum efficiency and inter-pixel crosstalk of planar LWIR arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Driggers, R. Vollmerhausen, J.P. Reynolds, J. Fanning, and G.C. Holst, Opt. Eng. 51(6), 063202 (2012). https://doi.org/10.1117/1.OE.51.6.063202

    Article  Google Scholar 

  2. G.C. Holst and R.G. Driggers, Opt. Eng. 51(9), 096401 (2012). https://doi.org/10.1117/1.OE.51.9.096401

    Article  Google Scholar 

  3. W.E. Tennant, D.J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Drieske, A. Chen, W. McLevige, S. Freeman, D. Lee, D.E. Cooper, and E. Piquette, J. Electron. Mater. 43(8), 3041 (2014). https://doi.org/10.1007/s11664-014-3192-4

    Article  Google Scholar 

  4. A. Rogalski, P. Martyniuk, and M. Kopytko, Rep. Prog. Phys. 79(4), 046501 (2016). https://doi.org/10.1088/0034-4885/79/4/046501

    Article  Google Scholar 

  5. C. Keasler and E. Bellotti, J. Electron. Mater. 40(8), 1795 (2011). https://doi.org/10.1007/s11664-011-1644-7

    Article  Google Scholar 

  6. J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Select Topics Quantum Electron. 19(5), 800415 (2013). https://doi.org/10.1109/JSTQE.2013.2256340

    Article  Google Scholar 

  7. B. Pinkie and E. Bellotti, J. Electron. Mater. 42(11), 3080 (2013). https://doi.org/10.1007/s11664-013-2647-3

    Article  Google Scholar 

  8. O. Gravrand and G. Destefanis, Infrared Phys. Technol. 59, 163 (2013). https://doi.org/10.1016/j.infrared.2012.12.034

    Article  Google Scholar 

  9. S. Mouzali, S. Lefebvre, S. Rommeluère, Y. Ferrec, and J. Primot, J. Electron. Mater. 45(9), 4607 (2016). https://doi.org/10.1007/s11664-016-4586-2

    Article  Google Scholar 

  10. M. Vallone, M. Goano, F. Bertazzi, G. Ghione, W. Schirmacher, S. Hanna, and H. Figgemeier, J. Electron. Mater. 45(9), 4524 (2016). https://doi.org/10.1007/s11664-016-4481-x

    Article  Google Scholar 

  11. M. Vallone, M. Goano, F. Bertazzi, G. Ghione, W. Schirmacher, S. Hanna, and H. Figgemeier, J. Electron. Mater. 46(9), 5458 (2017). https://doi.org/10.1007/s11664-017-5378-z

    Article  Google Scholar 

  12. C. Kittel, and H. Kroemer, Thermal Physics (W. H Freeman, New York, 1980)

    Google Scholar 

  13. J.G.A. Wehner, E.P.G. Smith, G.M. Venzor, K.D. Smith, A.M. Ramirez, B.P. Kolasa, K.R. Olsson, and M.F. Vilela, J. Electron. Mater. 40(8), 1840 (2011). https://doi.org/10.1007/s11664-011-1703-0

    Article  Google Scholar 

  14. J. Schuster and E. Bellotti, Appl. Phys. Lett. 101(26), 261118 (2012). https://doi.org/10.1063/1.4773484

    Article  Google Scholar 

  15. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, Appl. Phys. Rev. 1, 041102 (2014). https://doi.org/10.1063/1.4896193

    Article  Google Scholar 

  16. N.K. Dhar, R. Dat, and A.K. Sood, in Optoelectronics. Advanced Materials and Devices, Chap. 7, ed. by S.L. Pyshkin and J.M. Ballato (Rijeka: InTechOpen, 2013), pp. 149–190. https://doi.org/10.5772/51665

  17. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105(9), 091101 (2009). https://doi.org/10.1063/1.3099572

    Article  Google Scholar 

  18. W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev. 2(4), 041303 (2015). https://doi.org/10.1063/1.4936577

    Article  Google Scholar 

  19. R.S. Saxena, N.K. Saini, R. Bhan, and R. Sharma, Infrared Phys. Tech. 67, 58 (2014). https://doi.org/10.1016/j.infrared.2014.07.003

    Article  Google Scholar 

  20. Y.I. Salamin, Appl. Phys. B 86(2), 319 (2007). https://doi.org/10.1007/s00340-006-2442-4

    Article  Google Scholar 

  21. P. Vaveliuk, B. Ruiz, and A. Lencina, Opt. Lett. 32(8), 927 (2007). https://doi.org/10.1364/OL.32.000927

    Article  Google Scholar 

  22. O. Svelto, Principles of lasers (Berlin, Springer, 2010). https://doi.org/10.1007/978-1-4419-1302-9

    Book  Google Scholar 

  23. Synopsys Inc., Mountain View, CA, Sentaurus Device User Guide. Version M-2017.09 (2017)

    Google Scholar 

  24. M. Vallone, M. Goano, F. Bertazzi, G. Ghione, R. Wollrab, and J. Ziegler, J. Electron. Mater. 43(8), 3070 (2014). https://doi.org/10.1007/s11664-014-3252-9

    Article  Google Scholar 

  25. W. Shockley, and W.T. Read, Phys. Rev. 87(5), 835 (1952). https://doi.org/10.1103/PhysRev.87.835

    Article  Google Scholar 

  26. S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, NJ, 2007)

    Google Scholar 

  27. M. Vallone, M. Mandurrino, M. Goano, F. Bertazzi, G. Ghione, W. Schirmacher, S. Hanna, and H. Figgemeier, J. Electron. Mater. 44(9), 3056 (2015). https://doi.org/10.1007/s11664-015-3767-8

    Article  Google Scholar 

  28. A. Rogalski, Infrared Detectors, 2nd edn. (CRC Press, Boca Raton, FL, 2011)

    Google Scholar 

  29. P. Capper, and J. Garland (eds.), Mercury Cadmium Telluride. Growth, Properties and Applications (Wiley, Chichester, 2011)

  30. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  31. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien, 1984)

    Book  Google Scholar 

  32. K. Yee, IEEE Trans. Antennas Propag. 14(3), 302 (1966). https://doi.org/10.1109/TAP.1966.1138693

    Article  Google Scholar 

  33. D. Vasileska, S.M. Goodnick, and G. Klimeck, Computational Electronics. Semiclassical and Quantum Device Modeling and Simulation (CRC Press, Boca Raton, FL, 2010)

    Book  Google Scholar 

  34. M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  35. M. Vallone, A. Palmieri, M. Calciati, F. Bertazzi, F. Cappelluti, G. Ghione, M. Goano, S. Hanna, H. Figgemeier, R. Scarmozzino, E. Heller, and M. Bahl, in 17th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2017) (Copenhagen, Denmark, 2017), pp. 205–206. https://doi.org/10.1109/NUSOD.2017.8010063

  36. Synopsys Inc., RSoft FullWAVE User Guide, v2017.03 (Synopsys Inc., Ossining, NY, 2017)

    Google Scholar 

  37. J. Schuster, R. DeWames, P.S. Wijewarnasurya, J. Electron. Mater. 46(11), 6295 (2017). https://doi.org/10.1007/s11664-017-5736-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Goano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallone, M., Palmieri, A., Calciati, M. et al. Non-Monochromatic 3D Optical Simulation of HgCdTe Focal Plane Arrays. J. Electron. Mater. 47, 5742–5751 (2018). https://doi.org/10.1007/s11664-018-6424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6424-1

Keywords

Navigation