Skip to main content
Log in

Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on-p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yee, IEEE Trans. Antennas Propag. 14(3), 302 (1966). doi:10.1109/TAP.1966.1138693

    Article  Google Scholar 

  2. J.P. Berenger, J. Comp. Phys. 114(2), 185 (1994). doi:10.1006/jcph.1994.1159

    Article  Google Scholar 

  3. D. Vasileska, S.M. Goodnick, and G. Klimeck, Semiclassical and Quantum Device Modeling and Simulation, Computational Electronics (CRC Press, Boca Raton, 2010)

    Chapter  Google Scholar 

  4. M. Salazar-Palma, T.K. Sarkar, L.E. Garcia-Costillo, and T. Roy, Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling (Artech House, Norwood, 1998)

    Google Scholar 

  5. G. Pelosi, R. Coccioli, and S. Selleri, Quick Finite Elements for Electromagnetic Waves (Artech House, Norwood, 1998)

    Google Scholar 

  6. M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  7. M.G. Moharam and T.K. Gaylord, J. Opt. Soc. Am. 71(7), 811 (1981). doi:10.1364/JOSA.71.000811

    Article  Google Scholar 

  8. J.M. Liu, Photonic Devices (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  9. G.H. Spencer and M.V.R.K. Murty, J. Opt. Soc. Am. 52(6), 672 (1962). doi:10.1364/JOSA.52.000672

    Article  Google Scholar 

  10. T. Rahman and K. Fobelets, Comput. Phys. Commun. 193, 124 (2015). doi:10.1016/j.cpc.2015.03.016

    Article  Google Scholar 

  11. C. Keasler and E. Bellotti, J. Electron. Mater. 40(8), 1795 (2011). doi:10.1007/s11664-011-1644-7

    Article  Google Scholar 

  12. B. Pinkie, and E. Bellotti, J. Electron. Mater. 42(11), 3080 (2013). doi:10.1007/s11664-013-2647-3

    Article  Google Scholar 

  13. R.S. Saxena, N.K. Saini, R. Bhan, and R. Sharma, Infrared Phys. Technol. 67, 58 (2014). doi:10.1016/j.infrared.2014.07.003

    Article  Google Scholar 

  14. M. Vallone, M. Mandurrino, M. Goano, F. Bertazzi, G. Ghione, W. Schirmacher, S. Hanna, and H. Figgemeier, J. Electron. Mater. 44(9), 3056 (2015). doi:10.1007/s11664-015-3767-8

    Article  Google Scholar 

  15. Synopsys Inc, Mountain View, CA, Sentaurus Device User Guide. Version K-2015.06 (2015)

  16. D.G. Seiler, J.R. Lowney, C.L. Litter, and M.R. LoLoee, J. Vac. Sci. Technol. A 8(2), 1237 (1990). doi:10.1116/1.576952

    Article  Google Scholar 

  17. J. Wenus, J. Rutkowski, and A. Rogalski, IEEE Trans. Electron. Devices 48(7), 1326 (2001). doi:10.1109/16.930647

    Article  Google Scholar 

  18. M.H. Weiler, in Defects, (HgCd)Se, (HgCd)Te, Semiconductors and Semimetals, Chapter␣3, ed. by R.K. Willardson, A.C. Beer (Academic, New York, 1981), pp. 119–191

    Chapter  Google Scholar 

  19. A. Rogalski, Infrared Detectors, 2nd edn (CRC Press, Boca Raton, 2011)

    Google Scholar 

  20. V.C. Lopes, A.J. Syllaios, and M.C. Chen, Semicond. Sci. Technol. 8(6S), 824 (1993). doi:10.1088/0268-1242/8/6S/005

    Article  Google Scholar 

  21. T. Casselman, J. Appl. Phys. 52(2), 848 (1981). doi:10.1063/1.328426

    Article  Google Scholar 

  22. F. Bertazzi, M. Goano, and E. Bellotti, J. Electron. Mater. 40(8), 1663 (2011). doi:10.1007/s11664-011-1638-5

    Article  Google Scholar 

  23. W. Shockley and W.T. Read, Phys. Rev. 87(5), 835 (1952). doi:10.1103/PhysRev.87.835

    Article  Google Scholar 

  24. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  25. C.A. Hougen, J. Appl. Phys. 66(8), 3763 (1989)

    Article  Google Scholar 

  26. P. Capper and J. Garland (eds.), Mercury Cadmium Telluride. Growth, Properties and Applications (Wiley, Chichester, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Goano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallone, M., Goano, M., Bertazzi, F. et al. Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors. J. Electron. Mater. 45, 4524–4531 (2016). https://doi.org/10.1007/s11664-016-4481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4481-x

Keywords

Navigation