Skip to main content
Log in

From Transparent Conducting Material to Gas-Sensing Application of SnO2:Sb Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Transparent conductive thin films of nanocrystalline tin oxide:antimony (SnO2:Sb) were deposited on a preheated glass substrate at 400°C via spray pyrolysis technique. The effects of Sb doping concentration on morphological, structural and optical properties of the films were investigated by ultraviolet (UV)-visible absorption, x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The XRD study revealed that all the films had a polycrystalline nature, which increased with the Sb doping up to 4 wt.% and then decreased with further Sb doping. Similarly, the SEM images highlighted that the grain size of the SnO2:Sb thin films increased with Sb doping from 2 wt.% to 4 wt.% and then decreased for 6 wt.%. UV–visible study demonstrated that the average transmission in the visible region was found to vary from 35% to 75% depending on the Sb doping concentration. As a proof of concept, we implemented the SnO2:Sb thin films with different Sb doping for gas-sensing applications. To measure the selectivity of the SnO2:Sb thin films, the Sb-doped and -undoped films were exposed to different types of gases with varied concentration. The results of this work demonstrated that the SnO2:Sb thin film-based gas sensor had a high potential for NH3 at a low temperature (100°C). In addition, long-term stability of the SnO2:Sb thin film-based sensor was measured at 100 ppm NH3 for 90 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kohl, J. Phys. D Appl. Phys. 34, 125 (2001).

    Article  Google Scholar 

  2. D.E. Williams, Sens. Actuat. B Chem. 57, 1 (1999).

    Article  Google Scholar 

  3. N. Barsan and U. Weimar, J. Phys. Condens. Matter 15, 813 (2003).

    Article  Google Scholar 

  4. D.R. Miller, S.A. Akbar, and P.A. Morris, Sens. Actuat. B Chem. 204, 250 (2014).

    Article  Google Scholar 

  5. H. Meixner and U. Lampe, Metal oxide sensors. Sens. Actuat. B Chem. 33, 198 (1996).

    Article  Google Scholar 

  6. W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, and X.L. Xu, J. Alloys Compd. 605, 80 (2014).

    Article  Google Scholar 

  7. H.B. Feng, J. Huang, and J.H. Li, Chem. Commun. 49, 1017 (2013).

    Article  Google Scholar 

  8. D.D. Vuong, K.Q. Trung, N.H. Hung, N.V. Hieu, and N.D. Chien, J. Alloys Compd. 599, 195 (2014).

    Article  Google Scholar 

  9. Y.B. Shen, X.M. Cao, B.Q. Zhang, D.Z. Wei, J.W. Ma, W.G. Liu, C. Han, and Y.T. Shen, J. Alloys Compd. 593, 271 (2014).

    Article  Google Scholar 

  10. A. Kolmakov, Y.X. Zhang, G.S. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003).

    Article  Google Scholar 

  11. J. Zhang, J. Guo, H.Y. Xu, and B.Q. Cao, ACS Appl. Mater. Interfaces 5, 7893 (2013).

    Article  Google Scholar 

  12. Q. Kuang, C.S. Lao, Z.L. Wang, Z.X. Xie, and L.S. Zheng, J. Am. Chem. Soc. 129, 6070 (2007).

    Article  Google Scholar 

  13. D.J. Yang, I. Kamienchick, D.Y. Youn, A. Rothschild, and I.D. Kim, Adv. Funct. Mater. 20, 4258 (2010).

    Article  Google Scholar 

  14. H. Huang, C.Y. Ong, J. Guo, T. White, M.S. Tse, and O.K. Tan, Nanoscale 2, 1203 (2010).

    Article  Google Scholar 

  15. H. Huang, H. Gong, C.L. Chow, J. Guo, T.J. White, M.S. Tse, and O.K. Tan, Adv. Funct. Mater. 21, 2680 (2011).

    Article  Google Scholar 

  16. G.H. Lu, L.E. Ocola, and J.H. Chen, Adv. Mater. 21, 2478 (2009).

    Google Scholar 

  17. C.J. Martinez, B. Hockey, C.B. Montgomery, and S. Semancik, Langmuir 21, 7937 (2005).

    Article  Google Scholar 

  18. Q. Wan and T.H. Wang, Chem. Commun. 384, 3841 (2005).

    Article  Google Scholar 

  19. Z.Y. Zhang, R.J. Zou, G.S. Song, L. Yu, Z.G. Chen, and J.Q. Hu, J. Mater. Chem. 21, 17360 (2011).

    Article  Google Scholar 

  20. N.L.V. Carreño, A.P. Maciel, E.R. Leite, P.N. Lisboa-Filho, E. Longo, A. Valentini, L.F.D. Probst, C.O. Paiva-Santos, and W.H. Schreiner, Sens. Actuat. B Chem. 86, 185 (2002).

    Article  Google Scholar 

  21. A.P. Maciel, P.N. Lisboa-Filho, E.R. Leite, C.O. Paiva-Santos, Y. Maniette, W.H. Schreiner, and E. Longo, J. Eur. Ceram. Soc. 23, 707 (2003).

    Article  Google Scholar 

  22. P.J. Shaver, Appl. Phys. Lett. 11, 255 (1967).

    Article  Google Scholar 

  23. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, and K.Y. Rajpure, J. Alloys Compd. 505, 416 (2010).

    Article  Google Scholar 

  24. J. Rockenberger, U. Zum Felde, M. Tisher, L. Troger, M. Hasse, and H. Weller, J. Chem. Phys. 112, 4296 (2000).

    Article  Google Scholar 

  25. H.S. Varol and A. Hinsch, Sol. Energy Mater. Sol. C 40, 273 (1996).

    Article  Google Scholar 

  26. T.R. Giraldi, M.T. Escote, A.P. Maciel, E. Longo, E.R. Leite, and J.A. Varela, Thin Solid Films 515, 2678 (2006).

    Article  Google Scholar 

  27. Y. Wang, Q. Mu, G. Wang, and Z. Zhou, Sens. Actuat. B Chem. 145, 847 (2010).

    Article  Google Scholar 

  28. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, and K.Y. Rajpure, J. Alloys Compd. 509, 3108 (2011).

    Article  Google Scholar 

  29. A. Gupta, M.C. Bhatnagar, and P. Rajaram, Am. Int. J. Res. Formal Appl. Nat. Sci. 9, 46 (2015).

    Google Scholar 

  30. P.S. Joshi, S.M. Jogade, P.A. Lohar, and D.S. Sutrave, J. Nano-Electron. Phys 3, 956 (2011).

    Google Scholar 

  31. K.S. Shamala, L.C.S. Murthy, and K.N. Rao, Indian J. Pure Appl. Phys. 44, 867 (2006).

    Google Scholar 

  32. E. Elangovan, K. Ramesh, and K. Ramamurthi, Solid State Commun. 130, 523 (2004).

    Article  Google Scholar 

  33. S. Hemmatzadeh Saeedabad, C. Baratto, F. Rigoni, S.M. Rozati, G. Sberveglieri, K. Vojisavljevic, and B. Malic, Mater. Sci. Semicond. Process. 71, 461 (2017).

    Article  Google Scholar 

  34. K. Bouras, J.-L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, M. Balestrieri, D. Ihiawakrim, A. Dinia, and A. Slaoui, J. Mater. Chem. C 2, 8235 (2014).

    Article  Google Scholar 

  35. S.Y. Lee and B. Park, Thin Solid Films 510, 154 (2006).

    Article  Google Scholar 

  36. M. Esro, S. Georgakopoulos, H. Lu, G. Vourlias, A. Krier, B. Milne, W.P. Gillin, and G. Adamopoulos, J. Mater. Chem. C 4, 3563 (2016).

    Article  Google Scholar 

  37. B.D. Cullity, Elements of X-Ray Diffraction (Reading: Addison-Wesley Pub. Co., 1956).

    Google Scholar 

  38. K.Y. Rajpure, M.N. Kusumade, M.N. Neumann-Spallar, and C.H. Bhosale, Mater. Chem. Phys. 64, 184 (2000).

    Article  Google Scholar 

  39. M. Kojima, H. Kato, and M. Gatto, Philos. Mag. B 68, 215 (1993).

    Article  Google Scholar 

  40. J.E. Whitney and N. Davidson, J. Am. Ceram. Soc. 71, 3809 (1949).

    Google Scholar 

  41. K. Nassau, Am. Miner. 63, 219 (1978).

    Google Scholar 

  42. E. Elangovan and K. Ramamurthi, Cryst. Res. Technol. 38, 779 (2003).

    Article  Google Scholar 

  43. E. Elangovan and K. Ramamurthi, Appl. Surf. Sci. 249, 183 (2005).

    Article  Google Scholar 

  44. S. Gupta, B.C. Yadav, Prabhat K. Dwivedi, and B. Das, Mater. Res. Bull. 48, 3315 (2013).

    Article  Google Scholar 

  45. S. Sujatha Lekshmy, G.P. Daniel, and K. Joy, Appl. Surf. Sci. 274, 95 (2013).

    Article  Google Scholar 

  46. N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci. 86, 335 (1979).

    Article  Google Scholar 

  47. D. Manno, G. Micocci, R. Rella, A. Serra, A. Taurino, and A. Tepore, J. Appl. Phys. 82, 54 (1997).

    Article  Google Scholar 

  48. J.F. Chang, H.H. Kuo, I.C. Leu, and M.H. Hon, Sens. Actuat. B 84, 258 (2002).

    Article  Google Scholar 

  49. N.V. Hieu, V.V. Quang, N.D. Hoa, and D. Kim, Appl. Phys. 11, 657 (2011).

    Google Scholar 

  50. S. Yi, S. Tian, D. Zeng, K. Xu, X. Peng, H. Wang, S. Zhang, and C. Xie, Sens. Actuat. B 204, 351 (2014).

    Article  Google Scholar 

  51. I. Rawal, RSC Adv. (2014). https://doi.org/10.1039/C4RA12747A.

    Google Scholar 

  52. Q. Qi, T. Zhang, L. Liu, X. Zhang, and G. Lu, Sens. Actuat. B 141, 174 (2009).

    Article  Google Scholar 

  53. W. Guo, X.C. Duan, Y. Shen, K. Qi, C. Wei, and W. Zheng, Phys. Chem. Chem. Phys. 15, 1122 (2013).

    Google Scholar 

  54. N.V. Hieu, T.B. Thuy, and N.D. Chien, Sens. Actuat. B 129, 888 (2008).

    Article  Google Scholar 

  55. M. Shahabuddin, A. Sharma, J. Kumar, M. Tomar, A.U. Umar, and V. Gupta, Sens. Actuat. B 194, 410 (2014).

    Article  Google Scholar 

  56. A.V. Anisimov, N.K. Maksimova, E.V. Chernikov, E.Y. Sevastyanov, and N.V. Sergeychenko, in IEEE Siberian Conference on Control and Communications (2009).

  57. Y.D. Wang, X.H. Wu, Q. Su, Y.F. Li, and Z.L. Zhou, Solid- State Electron 45, 347 (2001).

    Article  Google Scholar 

  58. L. Jia, W. Cai, and H. Wang, Appl. Phys. Lett. 96, 103115 (2010).

    Article  Google Scholar 

  59. A. Gaddari, M. Amjoud, F. Berger, J.B. Sanchez, M. Lahcini, B. Rhouta, D. Mezzane, and C. Mavon, MATEC Web Conf. 5, 04010 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Rozati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedabad, S.H., Selopal, G.S., Rozati, S.M. et al. From Transparent Conducting Material to Gas-Sensing Application of SnO2:Sb Thin Films. J. Electron. Mater. 47, 5165–5173 (2018). https://doi.org/10.1007/s11664-018-6404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6404-5

Keywords

Navigation