Skip to main content
Log in

Energy Levels of Defects Created in Silicon Supersaturated with Transition Metals

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Intermediate-band semiconductors have attracted much attention for use in silicon-based solar cells and infrared detectors. In this work, n-Si substrates have been implanted with very high doses (1013 cm−2 and 1014 cm−2) of vanadium, which gives rise to a supersaturated layer inside the semiconductor. However, the Mott limit was not exceeded. The energy levels created in the supersaturated silicon were studied in detail by means of thermal admittance spectroscopy. We found a single deep center at energy near EC − 200 meV. This value agrees with one of the levels found for vanadium in silicon. The capture cross-section values of the deep levels were also calculated, and we found a relationship between the capture cross-section and the energy position of the deep levels which follows the Meyer–Neldel rule. This process usually appears in processes involving multiple excitations. The Meyer–Neldel energy values agree with those previously obtained for silicon supersaturated with titanium and for silicon contaminated with iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).

    Article  Google Scholar 

  2. W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  Google Scholar 

  3. E. López, A. Datas, I. Ramiro, P.G. Linares, E. Antolín, I. Artacho, A. Martí, A. Luque, Y. Shoji, T. Sogabe, A. Ogura, and Y. Okada, Sol. Energy Mater. Sol. Cells 149, 15 (2016).

    Article  Google Scholar 

  4. J.P. Mailoa, A.J. Akey, C.B. Simmons, D. Hutchinson, J. Mathews, J.T. Sullivan, D. Recht, M.T. Winkler, J.S. Williams, J.M. Warrender, P.D. Persans, M.J. Aziz, and T. Buonassisi, Nat. Commun. 5, 3011 (2014).

    Article  Google Scholar 

  5. E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, Appl. Phys. Lett. 104, 211105 (2014).

    Article  Google Scholar 

  6. H. Boustanji, S. Jaziri, and J.-L. Lazari, Sol. Energy Mater. Sol. Cells 159, 633 (2017).

    Article  Google Scholar 

  7. N. Tang, Q. Hu, A. Ren, W. Li, C. Liu, J. Zhang, L. Wu, B. Li, G. Zeng, and S. Hu, Sol. Energy 157, 707 (2017).

    Article  Google Scholar 

  8. D. Recht, M.J. Smith, S. Charnvanichborikarn, J.T. Sullivan, M.T. Winkler, J. Mathews, J.M. Warrender, T. Buonassisi, J.S. Williams, S. Gradečak, and M.J. Aziz, J. Appl. Phys. 114, 124903 (2013).

    Article  Google Scholar 

  9. A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006).

    Article  Google Scholar 

  10. H. Castán, E. Pérez, H. García, S. Dueñas, L. Bailón, J. Olea, D. Pastor, E. García-Hemme, M. Irigoyen, and G. González-Díaz, J. Appl. Phys. 113, 024104 (2013).

    Article  Google Scholar 

  11. J. Olea, M. Toledano-Luque, D. Pastor, E. San Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010).

    Article  Google Scholar 

  12. J.-W. Chen, A.G. Milnes, and A. Rohatgi, Solid State Electron. 22, 801 (1979).

    Article  Google Scholar 

  13. J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil, J. Appl. Phys. 104, 016105 (2008).

    Article  Google Scholar 

  14. J. Barbolla, S. Dueñas, and L. Bailón, Solid State Electron. 35, 285 (1992).

    Article  Google Scholar 

  15. D.K. Schroeder, Semiconductor material and device characterization, 2nd ed. (New York: Wiley, 1998).

    Google Scholar 

  16. D. Pastor, J. Olea, A. del Prado, E. García-Hemme, R. García-Hernansanz, and G. González-Díaz, Sol. Energy Mater. Sol. Cells 104, 159 (2012).

    Article  Google Scholar 

  17. C.W. White, S.R. Wilson, B.R. Appleton, and F.W. Young, J. Appl. Phys. 51, 738 (1980).

    Article  Google Scholar 

  18. T. Sadoh, H. Nakashima, and T. Surushima, J. Appl. Phys. 72, 520 (1992).

    Article  Google Scholar 

  19. E. Pérez, S. Dueñas, H. Castán, H. García, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, J. Appl. Phys. 118, 245704 (2015).

    Article  Google Scholar 

  20. E. García-Hemme, G. García, P. Palacios, D. Montero, R. García-Hernansanz, G. González-Díaz, and P. Wanhon, J. Phys. D Appl. Phys. 50, 495101 (2017).

    Article  Google Scholar 

  21. W. Meyer and H. Neldel, Z. Tech. Phys. 18, 518 (1937).

    Google Scholar 

  22. Y.F. Chen and S.F. Huang, Phys. Rev. B 44, 13775 (1991).

    Article  Google Scholar 

  23. E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, Appl. Phys. Lett. 106, 022105 (2015).

    Article  Google Scholar 

  24. E. Pérez, H. García, H. Castán, and S. Dueñas, Semicond. Sci. Technol. 30, 035011 (2015).

    Article  Google Scholar 

  25. E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, J. Phys. D Appl. Phys. 48, 075102 (2015).

    Article  Google Scholar 

  26. T. Coutts and N. Pearsall, Appl. Phys. Lett. 44, 134 (1984).

    Article  Google Scholar 

  27. A. Yelon, B. Movoghar, and R.S. Crandall, Rep. Prog. Phys. 69, 1145 (2006).

    Article  Google Scholar 

  28. A. Yelon, B. Movoghar, and H.M. Branz, Phys. Rev. B 46, 12244 (1992).

    Article  Google Scholar 

  29. D.V. Lang and C.H. Henry, Phys. Rev. Lett. 35, 1525 (1975).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantation process and metallic evaporations. This work has been supported by the Spanish MINECO TEC 2014 under Grant 52512-C3-3-R, by the Project MADRID-PV (Grant No. 2013/MAE-2780) funded by the Comunidad de Madrid, by the Spanish MINECO TEC2013 under Grant 41730-R, and TEC2017 under Grant 84378-R, and by the Universidad Complutense de Madrid (Programa de Financiación de Grupos de Investigación UCM-Banco Santander) under Grant 910173-2014D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, H., Castán, H., Dueñas, S. et al. Energy Levels of Defects Created in Silicon Supersaturated with Transition Metals. J. Electron. Mater. 47, 4993–4997 (2018). https://doi.org/10.1007/s11664-018-6227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6227-4

Keywords

Navigation