Skip to main content

Advertisement

Log in

Charge Carrier Dynamics and pH Effect on Optical Properties of Anionic and Cationic Porphyrin–Graphene Oxide Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Composites of graphene oxide (GO) functionalized with Sn(V) tetrakis (4-pyridyl)porphyrin (SnTPyP2+) and meso-tetrakis(4-phenylsulfonic acid)porphyrin (H4TPPS 2−4 ) were prepared at different pH values.Successful synthesis of water-soluble stable suspension of GO–SnTPyP2+ and GO–H4TPPS 2−4 was confirmed using various spectroscopic techniques, including scanning electronic microscopy (SEM), Raman spectroscopy, and ultraviolet–visible (UV–Vis) absorption. Variation of the pH was found to strongly influence the optical properties of the GO–SnTPyP2+ and GO–H4TPPS 2−4 composites, as demonstrated by the UV–Vis absorption results. Steady-state photoluminescence (PL) and time-resolved PL (TRPL) results for both composites showed PL quenching and decrease in the exciton mean lifetime, suggesting strong excited-state interactions between the different components. Moreover, charge carrier dynamics study revealed that insertion of GO into both porphyrin derivatives led to faster mean lifetime for excitons with a slight advantage in the case of the cationic porphyrin–GO composite, making it a better choice for charge separation applications thanks to the higher efficiency of charge/energy transfer interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. M. Freitag, Phys. Status Solidi B Basic Solid State Phys. 247, 2895 (2010).

    Article  Google Scholar 

  3. A. Geim and K. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  4. D.A.C. Brownson, D.K. Kampouris, and C.E. Banks, Chem. Soc. Rev. 41, 6944 (2012).

    Article  Google Scholar 

  5. S. Stankovich, D. Dikin, G. Dommett, K. Kohlhaas, E. Zimney, E. Stach, R. Piner, S. Nguyen, and R. Ruoff, Nature 442, 282 (2006).

    Article  Google Scholar 

  6. W. Ai, Z. Du, Z. Fan, J. Jiang, Y. Wang, H. Zhang, L. Xie, W. Huang, and T. Yu, Carbon 76, 148 (2014).

    Article  Google Scholar 

  7. G. Allaedini, E. Mahmoudi, P. Aminayi, S. MasrindaTasirin, and A. Mohammad, Synth. Met. 220, 72 (2016).

    Article  Google Scholar 

  8. G. Allaedini, E. Mahmoudi, P. Aminayi, S. MasrindaTasirin, and A. Mohammad, Fuller. Nanotub. Carbon. N. 23, 968 (2015).

    Article  Google Scholar 

  9. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Small 7, 1876 (2011).

    Article  Google Scholar 

  10. K.S. Novoselov, V. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192 (2012).

    Article  Google Scholar 

  11. R. Kumar Singh, R. Kumar, and D. Pratap Singh, RSC Adv. 6, 64993 (2016).

    Article  Google Scholar 

  12. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).

    Article  Google Scholar 

  13. Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, Carbon 47, 3113 (2009).

    Article  Google Scholar 

  14. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  15. O. Bajjou, A. Bakour, M. Khenfouch, M. Baitoul, E. Faulques, and M. Maaza, Synth. Met. 221, 247 (2016).

    Article  Google Scholar 

  16. C.W. Leishman and J.L. McHale, J. Phys. Chem. C 119, 28167 (2015).

    Article  Google Scholar 

  17. P. Angaridis, T. Lazarides, and A.C. Coutsolelos, Polyhedron 82, 19 (2014).

    Article  Google Scholar 

  18. M. Zannotti, R. Giovannetti, C.A. D’Amato, and E. Rommozzi, Spectrochim Acta A Mol. Biomol. Spectrosc. 153, 22 (2016).

    Article  Google Scholar 

  19. M. Khenfouch, J. Wery, M. Baïtoul, and M. Maaza, J. Lumin. 145, 33 (2014).

    Article  Google Scholar 

  20. O. Bajjou, M. Khenfouch, A. Bakour, M. Baïtoul, M. Maaza, and J. Wery Venturini, Nanomater. Nanotechnol. 5, 1 (2015).

    Article  Google Scholar 

  21. W. Chen, L. Yan, and P.R. Bangal, Carbon 48, 1146 (2010).

    Article  Google Scholar 

  22. A.C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  Google Scholar 

  23. K.F. Mak, L. Ju, F. Wang, and T.F. Heinz, Solid State Commun. 152, 1341 (2012).

    Article  Google Scholar 

  24. G. Wang, X. Shen, B. Wang, J. Yao, and J. Park, Carbon 47, 1359 (2009).

    Article  Google Scholar 

  25. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, and K.S. Novoselov, Phys. Rev. Lett. 97, 187401 (2006).

    Article  Google Scholar 

  26. J. Jiang, R. Pachter, F. Mehmood, A.E. Islam, and B. Maruyama, Carbon 90, 53 (2015).

    Article  Google Scholar 

  27. D.T. Oldfield, D.G. McCulloch, C.P. Huynh, K. Sears, and S.C. Hawkins, Carbon 94, 378 (2015).

    Article  Google Scholar 

  28. A. Kundu, R.K. Layek, A. Kuila, and A.K. Nandi, ACS Appl. Mater. Interfaces. 4, 5576 (2012).

    Article  Google Scholar 

  29. H. Wu, W. Lu, J.-J. Shao, C. Zhang, M.-B. Wu, B.-H. Li, and Q.-H. Yang, New Carbon Mater. 28, 327 (2013).

    Article  Google Scholar 

  30. B. Minaev and M. Lindgren, Sensors 9, 1937 (2009).

    Article  Google Scholar 

  31. D.S. Correa, L. De Boni, G.G. Parra, L. Misoguti, C.R. Mendonça, I.E. Borissevitch, S.C. Zílio, and N.M. Barbosa Neto, Opt. Mater. 42, 516 (2015).

    Article  Google Scholar 

  32. T. Ye, S. Ye, D. Chen, Q. Chen, B. Qiu, and X. Chen, Spectrochim. Acta A Mol. Biomol. Spectrosc. 86, 467 (2012).

    Article  Google Scholar 

  33. Y. Liang, X. Xue, W. Zhang, C. Fan, Y. Li, B. Zhang, and Y. Feng, Dyes Pigm. 115, 7 (2015).

    Article  Google Scholar 

  34. J. Tang, L. Niu, J. Liu, Y. Wang, Z. Huang, S. Xie, L. Huang, Q. Xu, Y. Wang, and L. Belfiore, Mater. Sci. Eng. C 34, 186 (2014).

    Article  Google Scholar 

  35. J. Sun, D. Meng, S. Jiang, G. Wu, S. Yan, J. Geng, and Y. Huanga, J. Mater. Chem. 22, 18879 (2012).

    Article  Google Scholar 

  36. F. Massuyeau, E. Faulques, S. Lefrant, M. Majdoub, M. Ghedira, K. Alimi, and J. Wery, J. Lumin. 131, 1541 (2011).

    Article  Google Scholar 

  37. F. Massuyeau, E. Faulques, H. Athalin, S. Lefrant, J.L. Duvail, J. Wery, E. Mulazzi, and R. Perego, J. Chem. Phys. 130, 124706 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bakour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajjou, O., Bakour, A., Khenfouch, M. et al. Charge Carrier Dynamics and pH Effect on Optical Properties of Anionic and Cationic Porphyrin–Graphene Oxide Composites. J. Electron. Mater. 47, 2897–2904 (2018). https://doi.org/10.1007/s11664-018-6139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6139-3

Keywords

Navigation