Skip to main content
Log in

Synthesis, Characterization and Applications of Ethyl Cellulose-Based Polymeric Calcium(II) Hydrogen Phosphate Composite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present report deals with the synthesis, characterization and testing of an ethyl cellulose–calcium(II) hydrogen phosphate (EC–CaHPO4) composite, where a sol–gel synthesis method was applied for the preparation of the composite so as to test its efficacy towards the electrochemical, biological, and adsorption related applications. The physical properties of the composite were characterized by using scanning electron microscopy (SEM), ultraviolet– visible (UV–Vis) spectroscopy, and fourier transform-infrared (FTIR) spectroscopy. On testing, the mechanical properties indicated that the composite is highly stable due to the cross-linked rigid framework and the enhanced interactions offered by the EC polymer supported for its binding very effectively. In addition, the conductivity of EC–CaHPO4 is completely governed by the transport mechanism where the electrolyte concentration has preference towards the adsorption of ions and the variations in the conductivity significantly affected the material’s performance. We observed an increasing order of KCl > NaCl for the conductivity when 1:1 electrolytes were applied. Further, the material was tested for its usefulness towards the purification of industrial waste waters by removing harmful metal ions from the samples collected near the Aligarh city, India where the data indicates that the material has highest affinity towards Pb2+, Cu2+, Ni2+ and Fe3+ metal ions. Finally, the biological efficiency of the material was confirmed by means of testing the antibacterial activity against two gram positive (staphylococcus aureus and Bacillus thuringiensis) and two gram negative bacteriums (Pseudomonas aeruginosa and Patoea dispersa). Thus, from the cumulative study of outcomes, it indicates that the EC–CaHPO4 composite found to serve as a potential smart biomaterial due to its efficiency in many different applications that includes the electrical conductivity, adsorption capability, and antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Oksman, Y. Aitomäki, A.P. Mathew, G. Siqueira, Q. Zhou, S. Butylina, S. Tanpichai, X. Zhou, and S. Hooshmand, Compos. Part A: Appl. Sci. Manuf. 83, 2 (2016).

    Article  Google Scholar 

  2. J.S. Borah and D.S. Kim, Korean J. Chem. Eng. 33, 3035 (2016).

    Article  Google Scholar 

  3. J. Silvestre, N. Silvestre, and J. de Brito, Mech. Adv. Mater. Struct. 23, 1263 (2016).

    Article  Google Scholar 

  4. T. Kosuge, K. Imato, R. Goseki, and H. Otsuka, Macromolecules 49, 5903 (2016).

    Article  Google Scholar 

  5. G. Chen, W. Xua, and D. Zhu, J. Mater. Chem. C 5, 4350 (2017).

    Article  Google Scholar 

  6. Y.V. Antipov, A.A. Kul’kov, and N.V. Pimenov, Polym. Sci. Ser. 58, 26 (2016).

    Article  Google Scholar 

  7. T. Miyazaki, A. Sugawara-Narutaki, and C. Ohtsuki, Front. Oral Biol. 17, 33 (2015).

    Google Scholar 

  8. H.C. Yang, J. Hou, V. Chen, and Z.K. Xu, J. Mater. Chem. A 4, 9716 (2016).

    Article  Google Scholar 

  9. S.A. Khan, S.B. Khan, T. Kamal, A.M. Asiri, and K. Akhtar, Recent Pat. Nanotechnol. 10, 181 (2016).

    Article  Google Scholar 

  10. F. Mohammad, H.A. Al-Lohedan, and H.N. Al-Haque, Adv. Mater. Lett. 8, 89 (2017).

    Article  Google Scholar 

  11. Y. Sun, Y. Hu, X. Zhu, H. Zou, Y. Sui, J. Xue, L. Yuan, J. Zhang, L. Zheng, D. Zhang, and Z. Song, J. Electron. Mater. 46, 6811 (2017).

    Article  Google Scholar 

  12. M. Torkaman and F.Z. Kazemabadi, Orient. J. Chem. 33, 1976 (2017).

    Article  Google Scholar 

  13. H. Tang, M. Liu, Y. Ma, Z. Du, Y. Zhan, and W. Yang, J. Electron. Mater. 46, 637 (2017).

    Article  Google Scholar 

  14. S.S. Sam, C.A. Ng, S.Y. Chee, N.Z. Habib, H. Nadeem, and W.P. Teoh, IOP Conference Series: Earth and Environmental Science, vol. 67, (2017), p. 012005.

  15. F. Mohammad, T. Arfin, and H.A. Al-Lohedan, Mater. Sci. Eng. C 71, 735 (2017).

    Article  Google Scholar 

  16. T. Arfin and Rafiuddin, Electrochim. Acta 56, 7476 (2011).

    Article  Google Scholar 

  17. T. Arfin, R. Bushra, and F. Mohammad, Graphene Technol. 1, 1 (2016).

    Article  Google Scholar 

  18. I.U. Khawaja, A. Choudhry, A. Mahmood, Z.A. Gilani, S.A. Shahid, and M. Farooq, Optoelectron Adv. Mater. 9, 1171 (2015).

    Google Scholar 

  19. S. Pandav and J. Naik, J. Pharm. 2014, 904036 (2014).

    Google Scholar 

  20. D.M. Patel, R.H. Jani, and C.N. Patel, Int. J. Pharm. Inv. 1, 172 (2011).

    Article  Google Scholar 

  21. F. Mohammad, T. Arfin, and H.A. Al-Lohedan, J. Ind. Eng. Chem. 45, 33 (2017).

    Article  Google Scholar 

  22. G.Y. Gor, P. Huber, and N. Bernstein, Appl. Phys. Rev. 4, 011303 (2017).

    Article  Google Scholar 

  23. F. Mohammad, L. du Plessis, and T. Arfin, X-Ray Diffraction: Structure, Principles and Applications, ed. K. Shih (New York: Nova Science Publishers, 2013), p. 161.

    Google Scholar 

  24. L. Bruno, S. Kasapis, and P.W.S. Heng, Carbohydrate Polym. 88, 382 (2012).

    Article  Google Scholar 

  25. A. Zhou, Q. Su, X. Li, and J. Weng, Mater. Sci. Eng. A 430, 341 (2006).

    Article  Google Scholar 

  26. C.H. Lee, H.B. Park, Y.M. Lee, and R.D. Lee, Ind. Eng. Chem. Res. 44, 7617 (2005).

    Article  Google Scholar 

  27. N. Schichte, C. Korte, D. Hesse, and J. Janek, Phys. Chem. Chem. Phys. 11, 3043 (2009).

    Article  Google Scholar 

  28. A.P. Abbott, G. Capper, D.L. Davies, and R.K. Rasheed, Chem. Eur. J. 10, 3769 (2004).

    Article  Google Scholar 

  29. J.A. Vega, C. Chartier, and W.E. Mustain, J. Power Sources 195, 7176 (2010).

    Article  Google Scholar 

  30. Z. Gao, T.J. Bandosz, Z. Zhao, M. Han, and J. Qiu, J. Hazard. Mater. 167, 357 (2009).

    Article  Google Scholar 

  31. M. Casciola, D. Capitani, A. Donnadio, V. Frittella, M. Pica, and M. Sganappa, Fuel Cells 9, 381 (2009).

    Article  Google Scholar 

  32. A. Bondarev, S. Mihai, O. Pântea, and S. Neagoe, Macromol. Symp. 303, 78 (2011).

    Article  Google Scholar 

  33. J.N. Cabrera, M.M. Ruiz, M. Fascio, N. D’Accorso, R. Mincheva, P. Dubois, L. Lizarraga, and R.M. Negri, Polymers 9, 331 (2017).

    Article  Google Scholar 

  34. M.B. Desta, J. Thermodyn. 2013, 375830 (2013).

    Article  Google Scholar 

  35. I. Wiegand, K. Hilpert, and R.E.W. Hancock, Nat. Protoc. 3, 163 (2008).

    Article  Google Scholar 

  36. J.Y. Park, J.I. Kim, and I.H. Lee, J. Nanosci. Nanotechnol. 15, 5672 (2015).

    Article  Google Scholar 

  37. L. Cheng, M.D. Weir, H.H.K. Xu, A.M. Kraigsley, N.J. Lin, S. Lin-Gibson, and X. Zhou, Dent. Mater. 28, 573 (2012).

    Article  Google Scholar 

  38. T. Arfin and F. Mohammad, Adv. Mater. Lett. 6, 1058 (2015).

    Article  Google Scholar 

  39. T. Arfin and F. Mohammad, Innov. Corros. Mater. Sci. 6, 1 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruq Mohammad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, F., Arfin, T. & Al-Lohedan, H.A. Synthesis, Characterization and Applications of Ethyl Cellulose-Based Polymeric Calcium(II) Hydrogen Phosphate Composite. J. Electron. Mater. 47, 2954–2963 (2018). https://doi.org/10.1007/s11664-018-6118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6118-8

Keywords

Navigation