Skip to main content
Log in

Sensitive Determination of 6-Thioguanine Using Caffeic Acid-functionalized Fe3O4 Nanoparticles as an Electrochemical Sensor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The study demonstrates the potential application of caffeic acid-functionalized magnetite nanoparticles (CA-Fe3O4 NPs) as an effective electrode modifying material for the electrochemical oxidation of the 6-thioguanine (6-TG) drug. The functionalized Fe3O4 NPs were prepared using simple wet-chemical methodology where the used caffeic acid acted simultaneously as growth controlling and functionalizing agent. The study discusses the influence of an effective functionalization on the signal sensitivity observed for the electro-oxidation of 6-TG over CA-Fe3O4 NPs in comparison to a glassy carbon electrode modified with bare and nicotinic acid (NA)-functionalized Fe3O4 NPs. The experiment results provided sufficient evidence to support the importance of favorable functionality to achieve higher signal sensitivity for the electro-oxidation of 6-TG. The presence of favorable interactions between the active functional moieties of caffeic acid and 6-TG synergized with the greater surface area of magnetic NPs produces a stable electro-oxidation signal within the working range of 0.01–0.23 μM with sensitive up to 0.001 μM. Additionally, the sensor showed the strong anti-interference potential against the common co-existing drug molecules such as benzoic acid, acetaminophen, epinephrine, norepinephrine, glucose, ascorbic acid and l-cysteine. In addition, the successful quantification of 6-TG from the commercial tablets obtained from local pharmacy further signified the practical capability of the discussed sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Mirmomtaz, A.A. Ensafi, and H.K. Maleh, Electroanalytical 20, 1973 (2008).

    Article  Google Scholar 

  2. A.P. Subramanian, S.K. Jaganathan, A. Manikandan, K.N. Pandiaraj, N. Gomathi, and E. Supriyanto, RSC Adv. 6, 48294 (2016).

    Article  Google Scholar 

  3. A.P. Subramanian, A.A. John, M.V. Vellayappan, A. Balaji, S.K. Jaganathan, A. Manikandan, and E. Supriyanto, Curr. Sci. 112, 1839 (2017).

    Article  Google Scholar 

  4. A.A. Ensafi and H.K. Maleh, J. Electroanal. Chem. 640, 75 (2010).

    Article  Google Scholar 

  5. H.K. Maleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri, and R. Moradi, Biosens. Bioelectron. 86, 879 (2016).

    Article  Google Scholar 

  6. M.M. Ardakani, M.A.S. Mohseni, and M.S. Niasari, Electroanalytical 28, 1370 (2016).

    Article  Google Scholar 

  7. H. Beitollahi, S.G. Ivari, and M. Torkzadeh-Mahani, Mater. Sci. Eng. C 69, 128 (2016).

    Article  Google Scholar 

  8. B. Fang, G. Wang, W. Zhang, M. Li, and X. Kan, Electroanalytical 17, 744 (2005).

    Article  Google Scholar 

  9. P. Posocco, Y.M. Hassan, I. Barandiaran, G. Kortaberria, S. Pricl, and M. Fermeglia, J. Phys. Chem. C 120, 7403 (2016).

    Article  Google Scholar 

  10. K.R. Reddy, K.P. Lee, and A.I. Gopalan, J. Appl. Polym. Sci. 106, 1181 (2007).

    Article  Google Scholar 

  11. K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, and Y. Lee, Scr. Mater. 58, 1010 (2008).

    Article  Google Scholar 

  12. G. Mathubala, A. Manikandan, S. Arul Antony, and P. Ramar, J. Mol. Struct. 1113, 79 (2016).

    Article  Google Scholar 

  13. S. Güner, Md. Amir, M. Geleri, M. Sertkol, and A. Baykal, Ceram. Int. 41, 10915 (2015).

    Article  Google Scholar 

  14. Md Amir, B. Ünal, M. Geleri, H. GÜngÜneş, Sagar E. Shirsath, and A. Baykal, Superlattices Microst. 88, 450 (2015).

    Article  Google Scholar 

  15. K. Chinnaraj, A. Manikandan, P. Ramu, S. Arul Antony, and P. Neeraja, J. Magn. Magn. Mater. 28, 179 (2015).

    Google Scholar 

  16. A. Manikandan, L. John Kennedy, J. Arul Mary, A. Dinesh, and J. Judith Vijaya, J. Ind. Eng. Chem. 20, 2077 (2014).

    Article  Google Scholar 

  17. A.A. Ensafi, P. Nasr-Esfahani, E. Heydari-Bafrooei, and B. Rezaei, Talanta 131, 149 (2015).

    Article  Google Scholar 

  18. R.A. Dar, P.K. Brahman, S. Tiwari, and K.S. Pitre, Colloids Surf. B 91, 10 (2012).

    Article  Google Scholar 

  19. A. Baykal, H. Erdemi, and M. Amir, J. Inorg. Organomet. Polym. 26, 190 (2016).

    Article  Google Scholar 

  20. U. Kurtan, M. Amir, and A. Baykal, Chin. J. Catal. 36, 705 (2015).

    Article  Google Scholar 

  21. A.V. Anupama, W. Keune, and B. Sahoo, J. Magn. Magn. Mater. 439, 156 (2017).

    Article  Google Scholar 

  22. R.A. Soomro, Z.H. Ibupoto, S.T.H. Sherazi, M.I. Abro, M. Willander, S.A. Mahesar, and N.H. Kalwar, Mater. Express 5, 437 (2015).

    Article  Google Scholar 

  23. Md Amir, M. Geleri, S. Güner, A. Baykal, and H. Sözeri, J. Inorg. Organomet. Polym Mater. 25, 1111 (2015).

    Article  Google Scholar 

  24. Md. Amir, A. Baykal, S. Guner, H. Gungunes, and H. Sozeri, Ceram. Int. 42, 5650 (2016).

  25. V. Jagadeesha Angadi, A.V. Anupama, R. Kumar, S. Matteppanavar, B. Rudraswamy, and B. Sahoo, J. Alloys Comp. 682, 263 (2016).

    Article  Google Scholar 

  26. K.R. Reddy, K.-P. Lee, A.I. Gopalan, and H.-D. Kang, React. Funct. Polym. 67, 943 (2007).

    Article  Google Scholar 

  27. M. Hassan, K.R. Reddy, E. Haque, A.I. Minett, and V.G. Gomes, J. Colloids Interface Sci. 410, 43 (2013).

    Article  Google Scholar 

  28. S.J. Ahn, D.H. Son, and K. Kim, J. Mol. Struct. 324, 223 (1994).

    Article  Google Scholar 

  29. Y.T. Tao, J. Am. Chem. Soc. 115, 4350 (1993).

    Article  Google Scholar 

  30. H. Beitollahi, M.A. Taher, F. Mirrahimi, and R. Hosseinzadeh, Mater. Sci. Eng. C 33, 1078 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Amir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir, M., Tunesi, M.M., Soomro, R.A. et al. Sensitive Determination of 6-Thioguanine Using Caffeic Acid-functionalized Fe3O4 Nanoparticles as an Electrochemical Sensor. J. Electron. Mater. 47, 2198–2208 (2018). https://doi.org/10.1007/s11664-018-6076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6076-1

Keywords

Navigation