Skip to main content
Log in

Wittichenite Cu3BiS3: Synthesis and Physical Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline Cu3BiS3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu3BiS3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu3BiS3 may show promise for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kocman and E.W. Nuffield, Acta Cryst. B29, 2528 (1973).

    Article  Google Scholar 

  2. E. Makovicky, J. Solid State Chem. 49, 85 (1983).

    Article  Google Scholar 

  3. N. Wang, Mineral. Mag. 58, 201 (1994).

    Article  Google Scholar 

  4. B.D. Viezbicke and D.P. Birnie III, ACS Sustain. Chem. Eng. 1, 306 (2013).

    Article  Google Scholar 

  5. K. Mariolacos, N. Jb. Miner. Mh. 4, 164 (1988).

    Google Scholar 

  6. T. Mizota, A. Inoue, T. Yamada, A. Nakatsuka, and N. Nakayama, Mineral. Mag. 20, 81 (1998).

    Google Scholar 

  7. D. Colombara, L.M. Peter, K. Hutchings, K.D. Rogers, S. Schäfer, J.T.R. Dufton, and M.S. Islam, Thin Solid Films 520, 5165 (2012).

    Article  Google Scholar 

  8. V. Estrella, M.T.S. Nair, and P.K. Nair, Semicond. Sci. Technol. 18, 190 (2003).

    Article  Google Scholar 

  9. N.J. Gerein and J.A. Haber, Chem. Mater. 18, 6289 (2006).

    Article  Google Scholar 

  10. M. Kumar and C. Persson, Appl. Phys. Lett. 102, 062109 (2013).

    Article  Google Scholar 

  11. F. Mesa, G. Gordillo, Th Dittrich, K. Ellmer, R. Baier, and S. Sadewasser, Appl. Phys. Lett. 96, 082113 (2010).

    Article  Google Scholar 

  12. F. Mesa, A. Dussan, and G. Gordillo, Phys. Status Solidi C 7, 917 (2010).

    Google Scholar 

  13. H. Matsushita, T. Ichikawa, and A. Katsui, J. Mater. Sci. 40, 2003 (2005).

    Article  Google Scholar 

  14. Y. Dong, H. Wang, and G.S. Nolas, Phys. Status Solidi RRL 8, 61 (2014).

    Article  Google Scholar 

  15. Y. Dong, H. Wang, and G.S. Nolas, Inorg. Chem. 52, 14364 (2013).

    Article  Google Scholar 

  16. W.G. Zeier, Y. Pei, G. Pomrehn, T. Day, N. Heinz, C.P. Heinrich, G.J. Snyder, and W. Tremel, J. Am. Chem. Soc. 135, 726 (2013).

    Article  Google Scholar 

  17. T.-R. Wei, C.-F. Wu, W. Sun, Y. Panm, and J.-F. Li, RSC Adv. 5, 42848 (2015).

    Article  Google Scholar 

  18. K. Tyagi, B. Gahtori, S. Bathula, A.K. Srivastava, A.K. Shukla, S. Auluck, and A. Dhar, J. Mater. Chem. A 2, 15829 (2014).

    Article  Google Scholar 

  19. E.J. Skoug, J.D. Cain, and D.T. Morelli, Appl. Phys. Lett. 96, 181905 (2010).

    Article  Google Scholar 

  20. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).

    Book  Google Scholar 

  21. H. Wang, W.D. Porter, H. Bottner, J. Kronig, L. Chen, S. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gillbert, J. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 1073 (2013).

    Article  Google Scholar 

  22. E.J. Skoug and D.T. Morelli, Phys. Rev. Lett. 107, 235901 (2011).

    Article  Google Scholar 

  23. Y. Yao, B.-P. Zhang, J. Pei, Y.-C. Liu, and J.-F. Li, J. Mater. Chem. C 5, 7845 (2017).

    Article  Google Scholar 

  24. K. Wei, L. Beauchemin, H. Wang, W.D. Porter, J. Martin, and G.S. Nolas, J. Alloys Compd. 650, 844 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Nolas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Hobbis, D., Wang, H. et al. Wittichenite Cu3BiS3: Synthesis and Physical Properties. J. Electron. Mater. 47, 2374–2377 (2018). https://doi.org/10.1007/s11664-017-6053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6053-0

Keywords

Navigation