Skip to main content
Log in

Optical Properties of Cu2O Electrodeposited on FTO Substrates: Effects of Cl Concentration

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, cuprous oxide (Cu2O) nanostructures were deposited via electrochemical route from aqueous solution containing different concentrations of copper chloride (CuCl2). The effect of chloride (Cl ) ions on structural and optical properties was studied. Photocurrent results show that the type of conduction of these nanostructures is affected by adding Cl ions and changed from p-type to n-type conduction. The x-ray diffraction (XRD) shows that our samples were pure Cu2O with a preferential orientation along the (111) direction. The intensity of (111) peak increases with the increase of Cl concentration. The optical characterization of Cu2O was studied by analyzing the transmission spectrum measured in normal incidence in the range of 300–1100 nm. The thickness and the refractive index of Cu2O nanostructures were determined using different methods. The optical gap energy (E g) and associated Urbach energy (E u) were also calculated. Effectively, the optical gap was estimated from Tauc extrapolation; it was found that it decreases from 2.02 eV to 1.85 eV with the increase in CuCl2 concentration; on the other hand, the thickness of the layers increases from 267 nm to 300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhai, H. Fan, Q. Li, and W. Yan, Appl. Surf. Sci. 258, 3232 (2012).

    Article  Google Scholar 

  2. C.M. Mcshane, and K. Choi, J. Phys. Chem. C 14, 6112 (2012).

    Google Scholar 

  3. A.S. Zoolfakar, A. Rani, A.J. Morfa, S. Balendhran, A.P.O. Mullane, and K. Kalantarzadeh, J. Mater. Chem. 22, 21767 (2012).

    Article  Google Scholar 

  4. A. Du Pasquiera, Z. Duanb, N. Pereiraa, and Y. Lu, J. Electrochem. Soc. 178, 163502 (2010).

    Google Scholar 

  5. N. Gupta, R. Singh, F. Wu, J. Narayan, C. McMillen, G.F. Alapatt, K.F. Poole, S.J. Hwu, D. Sulejmanovic, M. Young, G. Teeter, and H.S. Ullal, J. Mater. Res. 28, 1740 (2013).

    Article  Google Scholar 

  6. P.B. Ahirrao, B.R. Sankapal, and R.S. Patil, J. Alloys Compd. 509, 5551 (2011).

    Article  Google Scholar 

  7. W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, Y. Li, L. Zhang, Y. Sui, X. Zhou, H. Chen, and G. Zou, CrystEngComm 13, 2871 (2011).

    Article  Google Scholar 

  8. S. Bijani, L. Martínez, M. Gabás, E.A. Dalchiele, and J.R. Ramos-Barrado, J. Phys. Chem. C 113, 19482 (2009).

    Article  Google Scholar 

  9. D.G. Riveros, A. Garmendia, D. Ramírez, M. Tejos, P. Grez, H. Gómez, G. Riveros, and E.A. Dalchiele, J. Electrochem. Soc. 160, D28 (2013).

    Article  Google Scholar 

  10. I.S. Brandt, C.A. Martins, V.C. Zoldan, A.D.C. Viegas, J.H. Dias Da Silva, and A.A. Pasa, Thin Solid Films 562, 144 (2014).

    Article  Google Scholar 

  11. S. Laidoudi, A.Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, and A. Dinia, Semicond. Sci. Technol. 28, 115005 (2013).

    Article  Google Scholar 

  12. D. Djouadi, A. Aksas, and A. Chelouche, Ann. Chim. Sci. Mat. 35, 255 (2015).

    Article  Google Scholar 

  13. K.V. Rajani, S. Daniels, E. McGlynn, R.P. Gandhiraman, R. Groarke, and P.J. McNally, Mater. Lett. 71, 160 (2012).

    Article  Google Scholar 

  14. Y. Yang, Y. Li, and M. Pritzker, Electrochim. Acta 213, 225 (2016).

    Article  Google Scholar 

  15. L. Chau-Kuang Liau, and P.C. Tseng, Electrochim. Acta 182, 781 (2015).

    Article  Google Scholar 

  16. M. Etienne, Y. Guillemin, D. Grosso, and A. Walcarius, Anal. Bioanal. Chem. 405, 1497 (2013).

    Article  Google Scholar 

  17. T. Jiang, T. Xie, W. Yang, L. Chen, H. Fan, and D. Wang, J. Phys. Chem. C 117, 4619 (2013).

    Article  Google Scholar 

  18. L.C. Liau, Y. Lin, and Y. Peng, J. Phys. Chem. C 117, 26428 (2013).

    Article  Google Scholar 

  19. X. Han, K. Han, and M. Tao, Electrochem. Solid State Lett. 12, H89 (2009).

    Article  Google Scholar 

  20. S. Wu, Z. Yin, Q. He, G. Lu, Q. Yan, and H. Zhang, J. Phys. Chem. C 115, 15973 (2011).

    Article  Google Scholar 

  21. S. Haller, J. Jung, J. Rousset, and D. Lincot, Electrochim. Acta 82, 402 (2012).

    Article  Google Scholar 

  22. S. Wu, Z. Yin, Q. He, G. Lu, X. Zhoua, and H. Zhang, J. Mater. Chem. 21, 3467 (2011).

    Article  Google Scholar 

  23. A. Paracchino, J.C. Brauer, J. Moser, E. Thimsen, and M. Graetzel, J. Phys. Chem. C 116, 7341 (2012).

    Article  Google Scholar 

  24. K. Ghezali, L. Mentar, B. Boudine, and A. Azizi, J. Electroanal. Chem. 794, 212 (2017).

    Article  Google Scholar 

  25. H. Lahmar, A. Azizi, G. Schmerber, and A. Dinia, RSC Adv. 6, 68663 (2016).

    Article  Google Scholar 

  26. H. Gomez, J.L. Gonzalez, G. Torres, A. Maldonado, and M. de la Luz Olvera, in Electrical Engineering, Computing Science and Automatic Control Conference Proceedings (2012), pp. 1–5.

  27. O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B. Roldan Cuenya, and H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010).

    Article  Google Scholar 

  28. E.R. Shaaban, I.S. Yahia, and E.G. El-Metwally, Acta Phys. Pol. A 121, 628 (2012).

    Article  Google Scholar 

  29. C. Gümü, O.M. Ozkendir, H. Kavak, and Y. Ufuktepe, Optoelectron. Adv. Mater. Rapid Commun. 8, 299 (2006).

    Google Scholar 

  30. S. Ruhle, and A. Zaban, All-oxide Photovoltaics, RSC Energy and Environment Series No. 11. Advanced Concepts in Photovoltaics, ed. J.N. Arthur, G. Conibeer, and M.C. Beard (London: The Royal Society of Chemistry, 2014),

    Google Scholar 

  31. C. Richter, D. Lincot, and C.A. Gueymard, eds., Solar Energy (New York: Springer, 2013).

    Google Scholar 

  32. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  Google Scholar 

  33. J. Tauc, R. Grigorovi, and A. Vancu, Phys. Status Solidi 15, 627 (1966).

    Article  Google Scholar 

  34. J. Enríquez, and X. Mathew, Sol. Energy Mater. Sol. Cells 76, 313 (2003).

    Article  Google Scholar 

  35. M. Benhaliliba, C.E. Benouis, M.S. Aida, F. Yakuphanoglu, and A.S. Juarez, J. Sol Gel Sci. Technol. 55, 335 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loubna Mentar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouderbala, I.Y., Herbadji, A., Mentar, L. et al. Optical Properties of Cu2O Electrodeposited on FTO Substrates: Effects of Cl Concentration. J. Electron. Mater. 47, 2000–2008 (2018). https://doi.org/10.1007/s11664-017-6001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6001-z

Keywords

Navigation