Skip to main content
Log in

Fabrication and Properties of 5% Ce-Doped BaTiO3 Nanofibers-Based Ceramic

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to meet the demand for miniaturized devices, ferroelectric ceramics with micro- or nano-crystal particle size are among the primary needs. In this work, we fabricated 5 mol.% cerium-doped BaTiO3 (CBTO) nanofibers by using sol–gel combined with electrospinning. The mechanism of doping has been investigated in detail by multiple methods. In addition, the dielectric and ferroelectric properties of the obtained CBTO ceramics fabricated by these nanofibers were investigated. Their phase transition temperature shifted to a lower temperature due to the cerium dopant and size effects. An obvious decrease of ferroelectricity of the ceramics was observed, possibly due to the existence of polar nano-regions and cerium ions. The lower curie temperature of CBTO ceramics makes it possible for over-temperature protection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Zhang and F. Li, J. Appl. Phys. 111, 031341 (2012).

    Google Scholar 

  2. W.W. Wu, S. Bai, M.M. Yuan, Y. Qin, Z.L. Wang, and T. Jing, ACS Nano 6, 6231 (2012).

    Article  Google Scholar 

  3. S.Y. Xu, Y.W. Yeh, G. Poirier, M.C. McAlpine, R.A. Register, and N. Yao, Nano Lett. 13, 2393 (2013).

    Article  Google Scholar 

  4. X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett. 10, 2133 (2010).

    Article  Google Scholar 

  5. J. Junquera and P. Ghosez, Nature 422, 506 (2003).

    Article  Google Scholar 

  6. K. Yang, X.Y. Huang, Y.H. Huang, L.Y. Xie, and P.K. Jiang, Chem. Mater. 25, 2327 (2013).

    Article  Google Scholar 

  7. M. Paul, J. Am. Ceram. Soc. 91, 1385 (2008).

    Article  Google Scholar 

  8. B.P. Zhu, D.W. Wu, Q.F. Zhou, and J. Shi, Appl. Phys. Lett. 93, 012905 (2008).

    Article  Google Scholar 

  9. Z.X. Cheng, O. Kiyoshi, O. Minoru, M. Akimitsu, and K. Hideo, J. Am. Ceram. Soc. 89, 1188 (2010).

    Article  Google Scholar 

  10. L. Qiu, S.F. Yuan, X.L. Shi, and T.X. Huang, Smart Mater. Struct. 21, 075032 (2012).

    Article  Google Scholar 

  11. L. Wang, X. Deng, J. Li, X. Liao, G. Zhang, C. Wang, and K. Su, J. Nanosci. Nanotechnol. 14, 4224 (2014).

    Article  Google Scholar 

  12. B.C. Luo, X.H. Wang, E. Tian, G. Li, and L. Li, J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 8625 (2015).

    Article  Google Scholar 

  13. G. Dipankar, S. Akito, C. Jared, P.A. Thomas, H. Han, J.C. Nino, and J.L. Jones, Adv. Funct. Mater. 24, 885 (2014).

    Article  Google Scholar 

  14. Y.Q. Tang, J.L. Zhang, Y.Q. Wu, C.L. Wang, V. Koval, B.G. Shi, H.T. Ye, R. McKinnon, G. Viola, and H.X. Yan, Sci. Rep. 5, 9953 (2014).

    Google Scholar 

  15. D.Y. Lu, M. Toda, and M. Sugano, J. Am. Ceram. Soc. 89, 3112 (2006).

    Article  Google Scholar 

  16. Y. Park, K. Cho, and H.G. Kim, J. Am. Ceram. Soc. 81, 1893 (2005).

    Article  Google Scholar 

  17. M.A. Gomes, Á.S. Lima, K.I.B. Eguiluz, and G.R. Salazar-Banda, J. Mater. Sci. 51, 1 (2016).

    Article  Google Scholar 

  18. K.W. Lee, K.S. Kumar, G. Heo, M.J. Seong, and J.W. Yoon, J. Appl. Phys. 114, 134303 (2013).

    Article  Google Scholar 

  19. Y. He, T. Zhang, W. Zheng, R. Wang, X.W. Liu, Y. Xia, and J.W. Zhao, Sens. Actuators B Chem. 146, 98 (2010).

    Article  Google Scholar 

  20. S.H. Zhan, H.B. Yu, Y. Li, B. Jiang, X. Zhang, C.H. Yan, and S.Q. Ma, J. Dispers. Sci. Technol. 29, 1345 (2008).

    Article  Google Scholar 

  21. Y.Y. Zhuang, F. Li, G. Yang, Z. Xu, J.L. Li, B. Fu, Y.D. Yang, and S.J. Zhang, J. Am. Ceram. Soc. 97, 2725 (2014).

    Article  Google Scholar 

  22. Y. Umeda, K. Masuzawa, S. Ueda, S. Ootsuki, A. Kuwabara, and H. Moriwake, Ceram. Int. 38, 25 (2012).

    Article  Google Scholar 

  23. M. Cernea, O. Monnereau, P. Llewellyn, L. Tortet, and C. Galassi, J. Eur. Ceram. Soc. 26, 3241 (2006).

    Article  Google Scholar 

  24. L.P. Curecheriu, C.E. Ciomaga, V. Musteata, G. Canu, V. Buscaglia, and L. Mitoseriu, Ceram. Int. 42, 11085 (2016).

    Article  Google Scholar 

  25. D.Y. Lu, X.Y. Sun, and M. Toda, J. Phys. Chem. Solids 68, 650 (2007).

    Article  Google Scholar 

  26. K. Watanabe, H. Ohsato, H. Kishi, Y. Okino, N. Kohzu, Y. Iguchi, and T. Okuda, Solid State Ion. 108, 129 (1998).

    Article  Google Scholar 

  27. D. Padalia, G. Bisht, U.C. Johri, and K. Asokan, Solid State Sci. 19, 122 (2013).

    Article  Google Scholar 

  28. M.S. Zhang, J. Yu, W.C. Chen, and Z. Yin, Prog. Cryst. Growth Charact. Mater. 40, 33 (2000).

    Article  Google Scholar 

  29. P. Sá, J. Barbosa, I. Bdikin, B. Almeida, A.G. Rolo, E.M. Gomes, M. Belsley, A. Kholkin, and D. Isakov, J. Phys. D Appl. Phys. 46, 105304 (2013).

    Article  Google Scholar 

  30. Y.K. Liu, Y. Tian, Y.J. Feng, X.W. Wu, X.G. Han, and Y.K. Liu, J. Inorg. Mater. 23, 891 (2008).

    Article  Google Scholar 

  31. D. Li, J.T. Mccann, Y. Xia, and M. Marquez, J. Am. Ceram. Soc. 89, 1861 (2006).

    Article  Google Scholar 

  32. Z.Y. Li, H.M. Huang, and C. Wang, Macromol. Rapid Commun. 27, 152 (2006).

    Article  Google Scholar 

  33. Y.Y. Zhuang, Z. Xu, F. Li, Z.P. Liao, and W.H. Liu, RSC Adv. 5, 55269 (2015).

    Article  Google Scholar 

  34. C.A. Vasilescu, L. Trupina, B.S. Vasile, R. Trusca, M. Cernea, and A.C. Ianculescu, J. Nanopart. Res. 17, 434 (2015).

    Article  Google Scholar 

  35. J.H. Hwang and Y.H. Han, J. Am. Ceram. Soc. 84, 1750 (2010).

    Article  Google Scholar 

  36. S.J. Liu, L.X. Zhang, J.P. Wang, Y.Y. Zhao, and X. Wang, Ceram. Int. 43, 10683 (2017).

    Article  Google Scholar 

  37. M. Yan, T. Mori, J. Zou, F. Ye, D.R. Ou, and J. Drennan, Acta Mater. 57, 722 (2009).

    Article  Google Scholar 

  38. E. Bêche, P. Charvin, D. Perarnau, S. Abanades, and G. Flamant, Surf. Interface Anal. 40, 264 (2008).

    Article  Google Scholar 

  39. S.Y. Wan, J.J. Urban, Q. Gu, and H. Park, Nano Lett. 2, 447 (2002).

    Article  Google Scholar 

  40. H. Yu, X. Wang, J. Fang, and L. Li, J. Eur. Ceram. Soc. 34, 1445 (2014).

    Article  Google Scholar 

  41. W. Luan, L. Gao, and J. Guo, Ceram. Int. 25, 727 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongyong Zhuang or Zhuo Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhuang, Y., Xu, Z. et al. Fabrication and Properties of 5% Ce-Doped BaTiO3 Nanofibers-Based Ceramic. J. Electron. Mater. 47, 1099–1106 (2018). https://doi.org/10.1007/s11664-017-5862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5862-5

Keywords

Navigation