Skip to main content

Advertisement

Log in

Enhanced dielectric permittivity and breakdown strength of poly(vinylidene fluoride) nanocomposites containing core–shell BaTiO3@TiO2 nanofibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric capacitor has been rapidly developed in recent years, and the ceramics nanofibers/polymer nanocomposites with improved dielectric properties have huge potential in exploitation and application. In this article, the barium titanate (BT) nanofibers were synthesized by electrospinning and encapsulated by titanium dioxide (TiO2) via sol–gel method to prepare the core–shell structured BT@TiO2 nanofibers and then utilized to prepare poly(vinylidene fluoride) (PVDF)-based nanocomposites. The study we have performed shows that the dielectric constant of BT@TiO2/PVDF composites with 4 vol% fillers increase to 24 at 1 kHz, accompanied with the low dielectric loss of 0.019. The breakdown strength of BT@TiO2/PVDF composites achieves 128 kV/mm at the content of 2 vol% BT@TiO2 nanofibers, which is 150% of PVDF and 170% of BT/PVDF composites with the same content of fillers. Meanwhile, the tensile stress of BT@TiO2/PVDF composites also reaches the highest value of 44.01 MPa with 2 vol% fillers. In addition, the initial thermal decomposition temperature decreases with the increasing of BT@TiO2 nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.E. Bouharras, M. Raihane, B. Ameduri, Prog. Mater. Sci. 113, e100670 (2020)

    Article  Google Scholar 

  2. E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, J. Power Sources 168, 2 (2007)

    Article  CAS  Google Scholar 

  3. S.T. Liu, T. Ye, Y.S. Liu, H. Cheng, X.L. Liu, J. Mater. Sci.-Mater. Electron. 31, 13063 (2020)

    Article  CAS  Google Scholar 

  4. N.X. Xu, L. Hu, Q.L. Zhang, X.R. Xiao, H. Yang, E.J. Yu, Acs Appl. Mater. Inter. 7, 27373 (2017)

    Article  Google Scholar 

  5. S. Kaur, D.P. Singh 2020 Mater. Chem. Phys. 239: e122301

  6. A. Shivaram, S. Bose, A. Bandyopadhyay, Appl. Surf. Sci. 317, 573 (2014)

    Article  CAS  Google Scholar 

  7. Y. Song, Y. Shen, H.Y. Liu, Y.H. Lin, M. Li, C.W. Nan, J. Mater. Chem. 22, 8063 (2012)

    Article  CAS  Google Scholar 

  8. J. Wang, Y. Long, Y. Sun, X. Zhang, H. Yang, B. Lin, J. Mater. Sci:Mater. Electron. 29, 7842 (2018)

    CAS  Google Scholar 

  9. F. Guan, L. Yang, J. Wang, B. Guan, K. Han, Q. Wang, L. Zhu, Adv. Funct. Mater. 21, 3176 (2011)

    Article  CAS  Google Scholar 

  10. H. Li, L.L. Ren, Y. Zhou, B. Yao, Q. Wang, High Volt. 5, 365 (2020)

    Article  Google Scholar 

  11. Y.N. Yin, C.G. Zhang, W.C. Yu, G.H. Kang, Q.L. Yang, Z.Q. Shi, C.X. Xiong, Energy Storage Mater. 26, 105 (2020)

    Article  Google Scholar 

  12. J. Saiz-Poseu, J. Sedo, B. Garcia, C. Benaiges, T. Parella, R. Alibes, J. Hernando, F. Busqué, D. Ruiz-Molina, Adv. Mater. 25, 2066 (2013)

    Article  CAS  Google Scholar 

  13. C. Fant, J. Hedlund, F. Hook, M. Berglin, E. Fridell, H. Elwing, J. Adhes. 86, 25 (2010)

    Article  CAS  Google Scholar 

  14. X.L. Yang, Z.Q. Yu, Y.C. Wu, Adv. Eng. Mater. 18, 542 (2016)

    Article  CAS  Google Scholar 

  15. J. Wang, F.X. Guan, L. Cui, J.L. Pan, Q. Wang, L. Zhu, J. Polym. Sci. Pol. Phys. 52, 1669 (2014)

    Article  CAS  Google Scholar 

  16. H.P. Feng, L. Tang, G.M. Zeng, Y.Y. Zhou, Y.C. Deng, X.Y. Ren, B. Song, C. Liang, M.Y. Wei, J.F. Yu, Adv. Colloid Interfac. 267, 26 (2019)

    Article  CAS  Google Scholar 

  17. Y.J. Niu, H. Wang, A.C.S. Appl, Nano Mater. 2, 627 (2019)

    CAS  Google Scholar 

  18. X. Huang, B. Sun, Y. Zhu, S. Li, P. Jiang, Prog. Mater. Sci. 100, 187 (2019)

    Article  CAS  Google Scholar 

  19. R. Guo, H. Luo, M. Yan, X. Zhou, K. Zhou, D. Zhang, Nano Energy 79, e105412 (2021)

    Article  Google Scholar 

  20. Z. Pan, L. Yao, J. Zhai, K. Yang, B. Shen, H. Wang, Chem. Eng. 5, 4707 (2017)

    CAS  Google Scholar 

  21. X. Zhang, W. Chen, J. Wang, Y. Shen, L. Gu, Y.Y. Lin, C.W. Nan, Nanoscale 6, 6701 (2014)

    Article  CAS  Google Scholar 

  22. X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu, J. Du, Y.H. Lin, C.W. Nan, Adv. Mater. 27, 819 (2015)

    Article  CAS  Google Scholar 

  23. X. Lin, P.H. Hu, Z. Jia, S. Gao, J. Mater. Chem. A 4, 2314 (2016)

    Article  CAS  Google Scholar 

  24. Y. Feng, Y. Zhou, T. Zhang, C. Zhang, Y. Zhang, Y. Zhang, Q.G. Chi, Q.G. Chen, Energy Storage Mater. 25, 180 (2020)

    Article  Google Scholar 

  25. B. Sahoo, P.K. Panda, Ceram. Int. 38, 5189 (2012)

    Article  CAS  Google Scholar 

  26. S. Singh, S.S. Dey, S. Singh, N. Kumar, Mater. Today: Proc. 4, 3300 (2017)

    Google Scholar 

  27. M. Hedayati, E. Taheri-Nassaj, A. Yourdkhani, M. Borlaf, S. Rasekh, P. Amirkhizi, T. Sebastian, S. Payandeh, F. JörgClemens, J. Eur. Ceram. Soc. 41, 1299 (2021)

    Article  CAS  Google Scholar 

  28. J.R. Wu, W.W. Wang, Y. Tian, C.X. Song, H. Qiu, H. Xue, Nano Energy 77, e105122 (2020)

    Article  Google Scholar 

  29. D.Y. Lee, M.H. Lee, N.I. Cho, B.Y. Kim, Y.J. Oh, Met. Mater. Int. 16, 453 (2010)

    Article  CAS  Google Scholar 

  30. G.L. Chen, X.J. Lin, J.N. Li, J.G. Fisher, Y. Zhang, S.F. Huang, X. Cheng, Ceram. Int. 44, 15331 (2018)

    Article  CAS  Google Scholar 

  31. Q. Huang, H. Luo, C. Chen, X. Zhou, K. Zhou, D. Zhang, J. Alloy. Compd. 696, 1220 (2017)

    Article  CAS  Google Scholar 

  32. H.X. Tang, Y.R. Lin, H.A. Sodano, Adv. Energy Mater. 2, 469 (2012)

    Article  CAS  Google Scholar 

  33. J.C. Wang, Y.C. Long, Y. Sun, X.Q. Zhang, H. Yang, B.P. Lin, J. Mater. Sci.-Mater. Electron. 29, 7842 (2018)

    Article  CAS  Google Scholar 

  34. S.F. Mendes, C.M. Costa, C. Caparros, V. Sencadas, S. Lanceros-Méndez, J. Mater. Sci. 47, 1378 (2011)

    Article  Google Scholar 

  35. X.J. Wang, Z. Huang, M.Y. Wei, T. Lu, D.D. Nong, J.X. Zhao, X.Y. Gao, L.J. Teng, Thermochim. Acta. 672, 14 (2019)

    Article  CAS  Google Scholar 

  36. P. Feng, J.Y. He, S.P. Peng, C.D. Gao, Z.Y. Zhao, S.X. Xiong, C.J. Xiong, Mat. Sci. Eng. C-Mater. 100, 809 (2019)

    Article  CAS  Google Scholar 

  37. C. Shuai, G. Liu, Y. Yang, W. Yang, C. He, G. Wang, Z. Liu, F.W. Qi, S.P. Peng, Colloid Surf. B-Biointerfaces 185, e110587 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Heilongjiang Province (LH2019E059) and Outstanding Young Talents Project of Harbin University of Science and Technology (LGYC2018JC031).

Funding

Natural Science Foundation of Heilongjiang Province, LH2019E059, Wei Deng, outstanding young talents project of harbin university of science and technology, LGYC2018JC031, Wei Deng

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Deng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Deng, W., Ren, Y. et al. Enhanced dielectric permittivity and breakdown strength of poly(vinylidene fluoride) nanocomposites containing core–shell BaTiO3@TiO2 nanofibers. J Mater Sci: Mater Electron 33, 2667–2676 (2022). https://doi.org/10.1007/s10854-021-07475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07475-0

Navigation