Skip to main content
Log in

Influence of Europium Doping on Various Electrical Properties of Low-Temperature Sintered 0.5Ba0.90Ca0.10TiO3-0.5BaTi0.88Zr0.12O3-0.1%CuO-xEu Lead-Free Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

0.5Ba0.90Ca0.10TiO3-0.5BaTi0.88Zr0.12O3-0.1%CuO-xEu (BCT-BZT-Cu-xEu; x = 0–0.90%) lead-free ceramics were sintered at 1220°C with as-synthesized nanoparticles by a modified Pechini method. The structural characteristics and electrical properties of the ceramics that were influenced by varying europium-doping were investigated. All the ceramics featured high densification (relative density: ∼ 96%). X-ray powder diffraction results indicated the samples possessed pure orthorhombic phase. The maximum relative permittivity (ε r, 10869) was found at x around 0.30%. Europium ions could dope on different substitution sites in the ABO3 lattice, which evidently influenced electrical properties with various volumes of oxygen vacancy. Moreover, the formation mechanisms of oxygen vacancy and defect electron complexes were stated. The piezoelectric properties were impacted by defect electron complexes, internal stress, ionic electronegativity, etc. The optimal electrical properties, i.e., d 33 = 384 pC/N, Q m = 92, and k p = 0.36, were detected at x = 0.45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, R.S. Roth, and S. Marzullo, J. Appl. Phys. 25, 809 (1954).

    Article  Google Scholar 

  2. T.R. Shrout and S. Zhang, J. Electroceram. 19, 113 (2007).

    Article  Google Scholar 

  3. W. Liu and X. Ren, Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  4. D.S. Keeble, F. Benabdallah, P.A. Thomas, M. Maglione, and J. Kreisel, Appl. Phys. Lett. 102, 092903 (2013).

    Article  Google Scholar 

  5. M. Tanmoy, R. Guo, and A.S. Bhalla, J. Am. Ceram. Soc. 91, 1769 (2008).

    Article  Google Scholar 

  6. Y. Pu, M. Yao, H. Liu, and T. Frömling, J. Eur. Ceram. Soc. 36, 2461 (2016).

    Article  Google Scholar 

  7. Z. Sun, L. Li, H. Zheng, and L. Luo, Ceram. Int. 42, 12246 (2016).

    Article  Google Scholar 

  8. H. Yang, F. Yan, G. Zhang, Y. Lin, and F. Wang, J. Alloys Compd. 720, 116 (2017).

    Article  Google Scholar 

  9. X. Chen, X. Ruan, K. Zha, X. He, J. Zeng, Y. Li, L. Zheng, C.H. Park, and G. Li, J. Alloys Compd. 632, 103 (2015).

    Article  Google Scholar 

  10. R. Hayati, M.A. Bahrevar, T. Ebadzadeh, V. Rojas, N. Novak, and J. Koruza, J. Eur. Ceram. Soc. 36, 3391 (2016).

    Article  Google Scholar 

  11. J. Wu, W. Mao, Z. Wu, and Y. Jia, Mater. Lett. 166, 75 (2016).

    Article  Google Scholar 

  12. I. Coondoo, N. Panwar, H. Amorín, V.E. Ramana, M. Algueró, and A. Kholkin, J. Am. Ceram. Soc. 98, 3127 (2015).

    Article  Google Scholar 

  13. Z. Wang, W. Li, R. Chu, J. Hao, Z. Xu, and G. Li, J. Alloys Compd. 689, 30 (2016).

    Article  Google Scholar 

  14. P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, Appl. Phys. Lett. 104, 152902 (2014).

    Article  Google Scholar 

  15. D.I. Bilc and D.J. Singh, Phys. Rev. Lett. 96, 147602 (2006).

    Article  Google Scholar 

  16. D.K. Patel, B. Vishwanadh, V. Sudarsan, and S.K. Kulshreshtha, J. Am. Ceram. Soc. 96, 3857 (2013).

    Article  Google Scholar 

  17. R.A. Eichel, E. Erünal, P. Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker, and M.J. Hoffmann, Appl. Phys. Lett. 102, 242908 (2013).

    Article  Google Scholar 

  18. H. Sun, S. Duan, X. Liu, D. Wang, and H. Sui, J. Alloys Compd. 670, 262 (2016).

    Article  Google Scholar 

  19. Y.S. Tian, Y.S. Gong, D.W. Meng, and Y.J. Li, J. Mater. Sci. 50, 6134 (2015).

    Article  Google Scholar 

  20. Y.S. Tian, Y.S. Gong, Z.L. Zhang, and D.W. Meng, J. Mater. Sci. Mater. Electron. 25, 5467 (2014).

    Article  Google Scholar 

  21. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, and J. Wang, J. Eur. Ceram. Soc. 32, 891 (2012).

    Article  Google Scholar 

  22. L. Dong, D.S. Stone, and R.S. Lakes, J. Appl. Phys. 111, 084107 (2012).

    Article  Google Scholar 

  23. K.W.P. And, Y.E. Sung, S. Han, A.Y. Yun, and T. Hyeon, J. Phys. Chem. B 108, 939 (2004).

    Article  Google Scholar 

  24. M. Park and J.Y. Yoo, J. Electron. Mater. 41, 3095 (2012).

    Article  Google Scholar 

  25. M. Jiang, Q. Lin, D. Lin, Q. Zheng, X. Fan, X. Wu, H. Sun, Y. Wan, and L. Wu, J. Mater. Sci. 48, 1035 (2013).

    Article  Google Scholar 

  26. S. Ye, J. Fuh, L. Lu, Y.I. Chang, and J.R. Yang, RSC Adv. 3, 20693 (2013).

    Article  Google Scholar 

  27. D. Fu, M. Itoh, S.Y. Koshihara, T. Kosugi, and S. Tsuneyuki, Phys. Rev. Lett. 100, 227601 (2008).

    Article  Google Scholar 

  28. H.S. Kim, H.M. Christen, M.D. Biegalski, and D.J. Singh, J. Appl. Phys. 108, 054105 (2010).

    Article  Google Scholar 

  29. W. Liu, J. Wang, X. Ke, and S. Li, J. Alloys Compd. 712, 1 (2017).

    Article  Google Scholar 

  30. B. Qu, H. Du, and Z. Yang, J. Mater. Chem. C 4, 1795 (2016).

    Article  Google Scholar 

  31. Y.S. Tian, S.Y. Li, Y.S. Gong, D.W. Meng, J.P. Wang, and Q.S. Jing, J. Alloys Compd. 692, 797 (2017).

    Article  Google Scholar 

  32. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, and A. Banerjee, J. Magn. Magn. Mater. 320, 2602 (2008).

    Article  Google Scholar 

  33. R. Rani, S. Singh, J.K. Juneja, K.K. Raina, and C. Prakash, Ceram. Int. 37, 3755 (2011).

    Article  Google Scholar 

  34. W. Wang, L.D. Wang, W.L. Li, D. Xu, Y.F. Hou, and W.D. Fei, J. Alloys Compd. 624, 284 (2015).

    Article  Google Scholar 

  35. X. Tang, K.H. Chew, and H. Chan, Acta Mater. 52, 5177 (2004).

    Article  Google Scholar 

  36. A.A. Bokov and Z.G. Ye, J. Mater. Sci. 41, 31 (2006).

    Article  Google Scholar 

  37. J. Hao, W. Bai, and W. Li, J. Am. Ceram. Soc. 95, 1998 (2012).

    Article  Google Scholar 

  38. X. Chao, Z. Wang, Y. Tian, Y. Zhou, and Z. Yang, Mater. Res. Bull. 66, 16 (2015).

    Article  Google Scholar 

  39. P. Zhou, B. Zhang, L. Zhao, and L. Zhu, Ceram. Int. 41, 4035 (2015).

    Article  Google Scholar 

  40. J. Wu, Z. Wu, W.J. Mao, and Y.M. Jia, Mater. Lett. 149, 74 (2015).

    Article  Google Scholar 

  41. T. Badapanda, S. Sarangi, B. Behera, S. Parida, S. Saha, T.P. Sinha, R. Ranjan, and P.K. Sahoo, J. Alloys. Compd. 645, 586 (2015).

    Article  Google Scholar 

  42. M.C. Ehmke, J. Daniels, J. Glaum, M. Hoffman, J.E. Blendell, and K.J. Bowman, J. Am. Ceram. Soc. 96, 2913 (2013).

    Article  Google Scholar 

  43. E.E. Shafee and S.M. Behery, Mater. Chem. Phys. 132, 740 (2012).

    Article  Google Scholar 

  44. E.K. Akdoğan, K. Kerman, M. Abazari, and A. Safari, Appl. Phys. Lett. 92, 112908 (2008).

    Article  Google Scholar 

  45. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).

    Article  Google Scholar 

  46. S.W. Zhang, H.L. Zhang, B.P. Zhang, and G.L. Zhao, J. Eur. Ceram. Soc. 29, 3235 (2009).

    Article  Google Scholar 

  47. A. Srinivas, R.V. Krishnaiah, V.L.N. Iranjani, S.V. Kamat, T. Karthik, and S. Asthana, Ceram. Int. 41, 1980 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongshang Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, S., Sun, S. et al. Influence of Europium Doping on Various Electrical Properties of Low-Temperature Sintered 0.5Ba0.90Ca0.10TiO3-0.5BaTi0.88Zr0.12O3-0.1%CuO-xEu Lead-Free Ceramics. J. Electron. Mater. 47, 684–691 (2018). https://doi.org/10.1007/s11664-017-5839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5839-4

Keywords

Navigation