Skip to main content
Log in

The Structure, Electronic, Magnetic and Optical Properties of the Mn-X (X = B, C, N and O) Co-Doped Monolayer WS2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To expand the potential application of monolayer WS2 systems, the structure, electronic, magnetic and optical properties of pure and Mn-X (X = B, C, N and O) co-doped monolayer WS2 systems are theoretically studied using first-principles methods based on the density function theory. The pure monolayer WS2 system is a nonmagnetic semiconductor with a direct band gap E g of 1.82 eV, and the Mn-B and Mn-N co-doped monolayer WS2 systems remain of nonmagnetic semiconducting character with smaller band gaps \( E_{\rm{g}} \) of 1.09 eV and 0.84 eV, respectively. While the Mn-C and Mn-O co-doped monolayer WS2 systems exhibit magnetic semiconducting characters with a total magnetic moment \( M_{\rm{tot}} \) of 1 \( \mu_{\rm{B}} \), and spin-up gaps \( E_{\rm{g}}^{ \uparrow } \) (spin-down gaps \( E_{\rm{g}}^{ \downarrow } \)) of 0.54 (1.17) eV and 0.61 (1.44) eV, respectively. Although the pure monolayer WS2 system has the highest transmittance in the low energy region, the Mn-B co-doped monolayer WS2 system has the highest static dielectric constants \( \varepsilon_{1} (0) \) and \( \varepsilon_{2} (0) \), reflectivity \( r(0) \), refractive indices \( n(0) \) and \( k(0) \). Meanwhile, the Mn-X (X = B, C, N and O) co-doped monolayer WS2 systems are more suitable to make infrared photodetector due to their red-shift phenomenon. In particularly, the Mn-B co-doped monolayer WS2 system becomes of great interest to researchers since the absorption edge shifts to the mid-infrared spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S. Dubonos, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. Y. Haldorai, A. Rengaraj, C.H. Kwak, Y.S. Huh, and Y.K. Han, Synth. Met. 198, 10 (2014).

    Article  Google Scholar 

  3. S. Khamlich, F. Barzegar, Z.Y. Nuru, J.K. Dangbegnon, A. Bello, B.D. Ngom, N. Manyala, and M. Maaza, Synth. Met. 198, 101 (2014).

    Article  Google Scholar 

  4. M. Fathi, M. Saghafi, F. Mahboubi, and S. Mohajerzadeh, Synth. Met. 198, 345 (2014).

    Article  Google Scholar 

  5. S.K. Georgantzinos, G.I. Giannopoulos, and N.K. Anifantis, Mater. Des. 31, 4646 (2010).

    Article  Google Scholar 

  6. B. Akgöz and Ö. Civalek, Mater. Des. 42, 164 (2012).

    Article  Google Scholar 

  7. D.W. Chang, H.J. Choi, A. Filer, and J.B. Baek, J. Mater. Chem. A 2, 12136 (2014).

    Article  Google Scholar 

  8. B. Peter, D.B. Paul, R.N. Rahul, J.B. Tim, J. Da, S. Fred, A.P. Leonid, V.M. Sergey, F.G. Helen, W.H. Ernie, K.G. Andre, and S.N. Kostya, Nano Lett. 8, 1704 (2008).

    Article  Google Scholar 

  9. M. Zhou, Y.H. Lu, Y.Q. Cai, C. Zhang, and Y.P. Feng, Nanotechnology 22, 385502 (2011).

    Article  Google Scholar 

  10. B. Amin, T.P. Kaloni, G. Schreckenbach, and M.S. Freund, Appl. Phys. Lett. 108, 063105 (2016).

    Article  Google Scholar 

  11. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Article  Google Scholar 

  12. C. Ataca, H. Sahin, and S. Ciraci, J. Phys. Chem. C 116, 8983 (2012).

    Article  Google Scholar 

  13. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  Google Scholar 

  14. D. Braga, I.G. Lezama, H. Berger, and A. Morpurgo, Nano Lett. 12, 5218 (2012).

    Article  Google Scholar 

  15. Y. Jing, X. Tan, Z. Zhou, and P. Shen, J. Mater. Chem. A 2, 16892 (2014).

    Article  Google Scholar 

  16. Y. Li, D. Wu, Z. Zhou, C.R. Cabrera, and Z. Chen, J. Phys. Chem. Lett. 3, 2221 (2012).

    Article  Google Scholar 

  17. Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008).

    Article  Google Scholar 

  18. Y. Jing, Z. Zhou, C.R. Cabrera, and Z. Chen, J. Mater. Chem. A 2, 12104 (2014).

    Article  Google Scholar 

  19. Q. Tang, Z. Zhou, and Z. Chen, WIREs Comput. Mol. Sci. 5, 360 (2015).

    Article  Google Scholar 

  20. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).

    Article  Google Scholar 

  21. W. Zhang, C.P. Chuu, J.K. Huang, C.H. Chen, M.L. Tsai, Y.H. Chang, C.T. Liang, Y.Z. Chen, Y.L. Chueh, J.H. He, M.Y. Chou, and L.J. Li, Sci. Rep. 4, 3826 (2014).

    Article  Google Scholar 

  22. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).

    Article  Google Scholar 

  23. C.J. Gil, A. Pham, A. Yu, and S. Li, J. Phys. Condens. Matter 26, 306004 (2014).

    Article  Google Scholar 

  24. A. Ramasubramaniam and D. Naveh, Phys. Rev. B 87, 195201 (2013).

    Article  Google Scholar 

  25. H.E. Sliney, Tribol. Int. 15, 303 (1982).

    Article  Google Scholar 

  26. Y. Yang, X.L. Fan, and H. Zhang, Comput. Mater. Sci. 117, 354 (2016).

    Article  Google Scholar 

  27. X. Zhao, C. Xia, T. Wang, Y. Peng, and X. Dai, J. Alloys Compd. 649, 357 (2015).

    Article  Google Scholar 

  28. W.I. Choi, S.H. Jhi, K. Kim, and Y.H. Kim, Phys. Rev. B 81, 085441 (2010).

    Article  Google Scholar 

  29. W.B. Xu, B.J. Huang, P. Li, F. Li, C.W. Zhang, and P.J. Wang, Nanoscale Res. Lett. 9, 554 (2014).

    Article  Google Scholar 

  30. L.Y. Xie and J.M. Zhang, J. Alloys Compd. 702, 138 (2017).

    Article  Google Scholar 

  31. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  32. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  Google Scholar 

  33. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  34. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  35. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  36. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  37. Y.C. Cheng, Z.Y. Zhu, W.B. Mi, Z.B. Guo, and U. Schwingenschlögl, Phys. Rev. B 87, 100401(R) (2013).

    Article  Google Scholar 

  38. L.Y. Xie and J.M. Zhang, Superlattices Microstruct. 98, 148 (2016).

    Article  Google Scholar 

  39. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).

    Article  Google Scholar 

  40. M.Z. Yang, B.K. Chang, G.H. Hao, J. Guo, H.G. Wang, and M.S. Wang, Optik 125, 424 (2014).

    Article  Google Scholar 

  41. N. Korozlu, K. Colakoglu, E. Deligoz, and Y.O. Cifci, Opt. Commun. 284, 1863 (2011).

    Article  Google Scholar 

  42. Q.J. Liu, N.C. Zhang, F.S. Liu, H.Y. Wang, and Z.T. Liu, Opt. Mater. 35, 2629 (2013).

    Article  Google Scholar 

  43. S. Saha and T.P. Sinha, Phys. Rev. B 62, 13 (2000).

    Article  Google Scholar 

  44. Z.H. Yin, J.M. Zhang, and K.W. Xu, Comput. Mater. Sci. 112, 39 (2016).

    Article  Google Scholar 

  45. G. Galzerano, M. Marano, S. Longhi, E. Sani, A. Toncelli, M. Tonelli, and P. Laporta, Opt. Lett. 21, 2085 (2003).

    Article  Google Scholar 

  46. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, Opt. Lett. 22, 3493 (2009).

    Article  Google Scholar 

  47. D. Creeden, P.A. Ketteridge, P.A. Budni, S.D. Setzler, Y.E. Young, J.C. McCarthy, K. Zawilski, P.G. Schunemann, T.M. Pollak, E.P. Chicklis, and M. Jiang, Opt. Lett. 4, 315 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, LY., Zhang, JM. The Structure, Electronic, Magnetic and Optical Properties of the Mn-X (X = B, C, N and O) Co-Doped Monolayer WS2 . J. Electron. Mater. 46, 6544–6552 (2017). https://doi.org/10.1007/s11664-017-5699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5699-y

Keywords

Navigation