Skip to main content
Log in

Analytical Modeling of Acoustic Phonon-Limited Mobility in Strained Graphene Nanoribbons

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recent advances in graphene nanoribbon-based electronic devices encourage researchers to develop modeling and simulation methods to explore device physics. On the other hand, increasing the operating speed of nanoelectronic devices has recently attracted significant attention, and the modification of acoustic phonon interactions because of their important effect on carrier mobility can be considered as a method for carrier mobility optimization which subsequently enhances the device speed. Moreover, strain has an important influence on the electronic properties of the nanoelectronic devices. In this paper, the acoustic phonons mobility of armchair graphene nanoribbons (n-AGNRs) under uniaxial strain is modeled analytically. In addition, strain, width and temperature effects on the acoustic phonon mobility of strained n-AGNRs are investigated. An increment in the strained AGNR acoustic phonon mobility by increasing the ribbon width is reported. Additionally, two different behaviors for the acoustic phonon mobility are verified by increasing the applied strain in 3m, 3m + 2 and 3m + 1 AGNRs. Finally, the temperature effect on the modeled AGNR phonon mobility is explored, and mobility reduction by raising the temperature is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zhang and Q. Sun, J. Phys. Chem. Lett. 7, 2664 (2016).

    Article  Google Scholar 

  2. Y.-W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  3. W.H. Liao, B.H. Zhou, H.Y. Wang, and G.H. Zhou, Eur. Phys. J. B 76, 463 (2010).

    Article  Google Scholar 

  4. T. Fang, A. Konar, H. Xing, and D. Jena, Appl. Phys. Lett. 91, 092109 (2007).

    Article  Google Scholar 

  5. G. Wang, Phys. Chem. Chem. Phys. 13, 11939 (2011).

    Article  Google Scholar 

  6. D.L. Nika and A.A. Balandin, J Phys. Condens. Mater. 24, 233203 (2012).

    Article  Google Scholar 

  7. W.X. Zhang, Z.S. Huang, W.L. Zhang, and Y.R. Li, Nano Res. 7, 1731 (2014).

    Article  Google Scholar 

  8. C.H. Park, N. Bonini, T. Sohier, G. Samsonidze, B. Kozinsky, M. Calandra, F. Mauri, and N. Marzari, Nano Lett. 14, 1113 (2014).

    Article  Google Scholar 

  9. M.Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  10. M. Poljak, M. Wang, E.B. Song, T. Suligoj, and K.L. Wang, Solid State Electron. 84, 103 (2013).

    Article  Google Scholar 

  11. T. Fang, A. Konar, H. Xing, and D. Jena, Phys. Rev. B 78, 205403 (2008).

    Article  Google Scholar 

  12. A. Mogulkoc, M. Modarresi, B.S. Kandemir, M.R. Roknabadi, N. Shahtahmasebi, and M. Behdani, Phys. B 446, 85 (2014).

    Article  Google Scholar 

  13. M. Modarresi, A. Mogulkoc, M.R. Roknabadi, and N. Shahtahmasebi, Physica E 66, 303 (2015).

    Article  Google Scholar 

  14. I. Knezevic and N. Sule, J. Appl. Phys. 112, 053702 (2012).

    Article  Google Scholar 

  15. A. Betti, G. Fiori, and G. Iannaccone, IEEE Trans. Electron. Dev. 58, 2824 (2011).

    Article  Google Scholar 

  16. B.S. Dandogbessi and O. Akin-Ojo, J. Appl. Phys. 120, 055105 (2016).

    Article  Google Scholar 

  17. N.D. Akhavan, G. Jolley, G.A. Umana-Membreno, J. Antoszewski, and L. Faraone, J. Appl. Phys. 112, 094505 (2012).

    Article  Google Scholar 

  18. T. Sohier, Electrons and phonons in graphene: electron-phonon coupling, screening and transport in the field effect setup (Paris: Université Pierre et Marie Curie, 2015), pp. 39–56.

    Google Scholar 

  19. Y.H. Xu, J. Dai, and X.C. Zeng, J. Phys. Chem. Lett. 7, 302 (2016).

    Article  Google Scholar 

  20. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, Nat. Nanotechnol. 10, 227 (2015).

    Article  Google Scholar 

  21. R. Binder, Optical Properties of Graphene (Singapore: World Scientific Publishing Company, 2016), pp. 183–220.

    Google Scholar 

  22. V.M. Borzdov, V.O. Galenchik, F.F. Komarov, D.V. Pozdnyakov, and O.G. Zhevnyak, Phys. Lett. A 319, 379 (2003).

    Article  Google Scholar 

  23. E.H. Hwang and S. Das, Sarma. Phys. Rev. B 77, 115449 (2008).

    Article  Google Scholar 

  24. M. Han, Y. Zhang, and H.-B. Zheng, Chin. Phys. Lett. 27, 037302 (2010).

    Article  Google Scholar 

  25. A. Betti, G. Fiori, G. Iannaccone and Y. Mao, in IEEE International Electron Devices Meeting (IEDM) (2009), pp. 37.2.1–37.2.4.

  26. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Solid State Commun. 146, 351 (2008).

    Article  Google Scholar 

  27. N.A.I.C. Rosid, M.T. Ahmadi, and R. Ismail, Chin. Phys. B 25, 096802 (2016).

    Article  Google Scholar 

  28. W.A. Harrison, Electronic structure and the properties of solids: the physics of the chemical bond, 2nd ed. (New York: Dover Publications, 1989), pp. 180–202.

    Google Scholar 

  29. B. Obradovic, R. Kotlyar, F. Heinz, P. Matagne, T. Rakshit, M.D. Giles, M.A. Stettler, and D.E. Nikonov, Appl. Phys. Lett. 88, 142102 (2006).

    Article  Google Scholar 

  30. J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

    Article  Google Scholar 

  31. K. Seeger, Semiconductor physics: an introduction (New York City: Springer, 1999), pp. 171–183.

    Book  Google Scholar 

  32. M.T. Ahmadi, Z. Johari, N. Aziziah Amin, A.H. Fallahpour, and R. Ismail, J Nanomater. (2010). doi:10.1155/2010/753738.

    Google Scholar 

  33. M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, ACS Nano 5, 2593 (2011).

    Article  Google Scholar 

  34. L.H. Qu, J.M. Zhang, K.-W. Xu, and V. Ji, Physica E 56, 55 (2014).

    Article  Google Scholar 

  35. M. T. Ahmadi and R. Ismail, in International Conference on Intelligent Systems, Modelling and Simulation (2010), pp. 401–405.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefvand, A., Ahmadi, M.T. & Meshginqalam, B. Analytical Modeling of Acoustic Phonon-Limited Mobility in Strained Graphene Nanoribbons. J. Electron. Mater. 46, 6553–6562 (2017). https://doi.org/10.1007/s11664-017-5698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5698-z

Keywords

Navigation