Skip to main content
Log in

Evaluation of Detachable Ga-Based Solder Contacts for Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low electrical and thermal contact resistances are a prerequisite for highly efficient thermoelectric generators. Likewise, certain measurement setups for characterization of thermoelectric materials rely on good-quality contacts between sample and setup. Detachable contacts are an interesting alternative to permanent contacting solutions due to ease of handling and nondestructive disassembly of valuable samples. Therefore, the applicability of gallium-based liquid metal solder as detachable contact material was studied, particularly with regard to compatibility of the solder with state-of-the-art thermoelectric materials CoSb3, Mg2Si, and FeSi2. Tungsten, nickel, chromium, and titanium were tested as protective coatings between the thermoelectric material and liquid metal solder. Electrical measurements showed that some materials form excellent and stable contacts with the solder for a limited temperature range. At higher temperatures, application of a protective layer was found to be necessary for all investigated materials. Tungsten and nickel showed promising results as protective layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, and E. Müller, J. Electron. Mater. 39, 1934 (2010).

    Article  Google Scholar 

  2. F.P. Brito, L. Figueiredo, L.A. Rocha, A.P. Cruz, L.M. Goncalves, J. Martins, and M.J. Hall, J. Electron. Mater. 45, 1711 (2015).

    Article  Google Scholar 

  3. D. Ebling, K. Bartholomé, M. Bartel, and M. Jägle, J. Electron. Mater. 39, 1376 (2010).

    Article  Google Scholar 

  4. J. Fan, L. Chen, S. Bai, and X. Shi, Mater. Lett. 58, 3876 (2004).

    Article  Google Scholar 

  5. J. García-Cañadas and G. Min, AIP Conf. Proc. 1449, 454 (2012).

    Article  Google Scholar 

  6. A. Muto, D. Kraemer, Q. Hao, Z.F. Ren, and G. Chen, Rev. Sci. Instrum. 80, 093901 (2009).

    Article  Google Scholar 

  7. H. Iwasaki, T. Yamamoto, H. Kim, and G. Nakamoto, J. Electron. Mater. 42, 1840 (2013).

    Article  Google Scholar 

  8. J. Martin, T. Tritt, and C. Uher, J. Appl. Phys. 108, 121101 (2010).

    Article  Google Scholar 

  9. R. Amatya, P.M. Mayer, and R.J. Ram, Rev. Sci. Instrum. 83, 075107 (2012).

    Article  Google Scholar 

  10. D. Kraemer and G. Chen, Rev. Sci. Instrum. 85, 025108 (2014).

    Article  Google Scholar 

  11. L.I. Anatychuk and V.V. Lysko, J. Electron. Mater. 43, 3863 (2014).

    Article  Google Scholar 

  12. A. Miner and U. Ghoshal, Appl. Phys. Lett. 85, 506 (2004).

    Article  Google Scholar 

  13. M. Kun-Quan and L. Jing, J. Phys. D Appl. Phys. 40, 4722 (2007).

    Article  Google Scholar 

  14. P. Sen and C.J. Kim, IEEE Trans. Ind. Electron. 56, 1314 (2009).

    Article  Google Scholar 

  15. R.C. Chiechi, E.A. Weiss, M.D. Dickey, and G.M. Whitesides, Angew. Chem. Int. Ed. 47, 142 (2008).

    Article  Google Scholar 

  16. P. Surmann and H. Zeyat, Anal. Bioanal. Chem. 383, 1009 (2005).

    Article  Google Scholar 

  17. N.B. Morley, J. Burris, L.C. Cadwallader, and M.D. Nornberg, Rev. Sci. Instrum. 79, 056107 (2008).

    Article  Google Scholar 

  18. L.C. Cadwallader, Presented at the Conference: Energy Facility Contractors Group (EFCOG) Safety Analysis Working Group (SAWG) 2003 Annual Meeting, Salt Lake City, UT (US), 06/21/2003–06/27/2003; Other Information: PBD: 7 May 2003, 2003 (unpublished).

  19. F. Barbier and J. Blanc, J. Mater. Res. 14, 737 (1999).

    Article  Google Scholar 

  20. V.Y. Prokhorenko, V.V. Roshchupkin, M.A. Pokrasin, S.V. Prokhorenko, and V.V. Kotov, High Temp. 38, 954 (2000).

    Article  Google Scholar 

  21. H. Kolb, T. Dasgupta, K. Zabrocki, E. Mueller, and J. de Boor, Rev. Sci. Instrum. 86, 073901 (2015).

    Article  Google Scholar 

  22. A. Schmitz, C. Schmid, J. de Boor, C. Stiewe, and E. Müller, Mater. Today Proc. 2, 705 (2015).

    Article  Google Scholar 

  23. J. de Boor, C. Compere, T. Dasgupta, C. Stiewe, H. Kolb, A. Schmitz, and E. Mueller, J. Mater. Sci. 49, 3196 (2014).

    Article  Google Scholar 

  24. P. Ziolkowski, C. Stiewe, J. de Boor, I. Druschke, K. Zabrocki, F. Edler, S. Haupt, J. König, and E. Mueller, J. Electron. Mater. 46, 51 (2017).

    Article  Google Scholar 

  25. J. de Boor, C. Stiewe, P. Ziolkowski, T. Dasgupta, G. Karpinski, E. Lenz, F. Edler, and E. Mueller, J. Electron. Mater. 42, 1711 (2013).

    Article  Google Scholar 

  26. J. de Boor, C. Gloanec, H. Kolb, R. Sottong, P. Ziolkowski, and E. Müller, J. Alloys Compd. 632, 348 (2015).

    Article  Google Scholar 

  27. T. Sakamoto, Y. Taguchi, T. Kutsuwa, K. Ichimi, S. Kasatani, and M. Inada, J. Electron. Mater. 45, 1321 (2015).

    Article  Google Scholar 

  28. D. Zhao, M. Zuo, Z. Wang, X. Teng, and H. Geng, Appl. Surf. Sci. 305, 86 (2014).

    Article  Google Scholar 

  29. D.E. Newbury and N.W.M. Ritchie, J. Mater. Sci. 50, 493 (2015).

    Article  Google Scholar 

  30. K. Nogi, T. Kita, and X.Q. Yan, Mater. Sci. Eng. A 307, 129 (2001).

    Article  Google Scholar 

  31. T. Caillat, A. Borshchevsky, and J.P. Fleurial, AIP Conf. Proc. 301, 517 (1994).

    Article  Google Scholar 

  32. P.W.T.S. Hidnert, Scientific Papers of the Bureau of Standards 20, 483 (1925).

    Article  Google Scholar 

  33. J.S. Przybyszewski, NASA TN D-6184, 1–21 (1971).

  34. T.A. Lobova and T.A. Syrvacheva, SOV Powder Metall. 22, 321 (1983).

    Google Scholar 

  35. H. Okamoto, J. Phase Equilib. 23, 457 (2002).

  36. J.L. Murray, Bull. Alloy Phase Diagr. 6, 327 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kolb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolb, H., Sottong, R., Dasgupta, T. et al. Evaluation of Detachable Ga-Based Solder Contacts for Thermoelectric Materials. J. Electron. Mater. 46, 5057–5063 (2017). https://doi.org/10.1007/s11664-017-5486-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5486-9

Keywords

Navigation