Skip to main content
Log in

Study of Line-Space Pitch Multiplication Using Graphoepitaxy Directed Self-Assembly for Semiconductor Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Directed self-assembly (DSA) of block co-polymers (BCPs) has attracted intensive attention in both academia and industry in recent years. As a versatile and complimentary patterning technique for advanced technology nodes, DSA could be used to pattern line/space and contact holes for electronic devices at the 7-nm technology node and beyond. In this paper, we systematically investigated the key parameters affecting the formation of defect-free DSA line/space patterns with the graphoepitaxy approach, which included the role of surface affinity of the pre-pattern, the critical dimension commensurability between the pre-pattern and the intrinsic pitch of lamellar BCP, the thickness effect of BCP and, more importantly, the pattern transfer from BCP to the underlying Si substrate. After process optimization, the 35-nm pitch (line width ∼16 nm) line/space patterns were successfully transferred to a Si substrate from the 200-nm pitch (space width ∼90 nm) pre-patterns established by conventional ArF lithography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Neisser and S. Wurm, Adv. Opt. Technol. 4, 235 (2015).

    Google Scholar 

  2. Y.J. Chen, Q. Cheng, and W.L. Kang, Proc. SPIE 8326, 832620 (2012).

    Article  Google Scholar 

  3. B.Q. Wu and A. Kumar, J. Vac. Sci. Technol., B 25, 1743 (2007).

    Article  Google Scholar 

  4. A. Pirati, R. Peeters, D. Smith, S. Lok, A. Minnaert, M.V. Noordenburg, J. Mallmann, N. Harned, J. Stoeldraijer, C. Wagner, C. Zoldesi, E.V. Setten, J. Finders, K.D. Peuter, C.D. Ruijter, M. Popadic, R. Huang, M. Lin, F. Chuang, R.V. Es, M. Beckers, D. Brandt, N. Farrar, A. Schafgans, D. Brown, H. Boom, H. Meiling, and R. Kool, Proc. SPIE 9422, 94221P (2015).

    Google Scholar 

  5. V. Jindal, P. Kearney, A. Antohe, M. Godwin, A. John, R. Teki, J. Harris-Jones, E. Stinzianni, and F. Goodwin, Proc. SPIE 8679, 86791D (2013).

    Article  Google Scholar 

  6. A. Pirati, R. Peeters, D. Smith, S. Lok, M.V. Noordenburg, R.V. Es, E. Verhoeven, H. Meijer, A. Minnaert, J. Horst, H. Meiling, J. Mallmann, C. Wagner, J. Stoeldraijer, G. Fisser, J. Finders, C. Zoldesi, U. Stamm, H. Boom, D. Brandt, D. Brown, I. Fomenkov, and M. Purvis, Proc. SPIE 9776, 97760A (2016).

    Google Scholar 

  7. C.M. Bates, M.J. Maher, D.W. Janes, C.J. Ellison, and C.G. Willson, Macromolecules 47, 2 (2014).

    Article  Google Scholar 

  8. M.P. Stoykovich and P.F. Nealey, Mater. Today 9, 20 (2006).

    Article  Google Scholar 

  9. K. Schmidt, H. Osaki, K. Nishino, M. Sanchez, C.C. Liu, T. Furukawa, C. Chi, J. Pitera, N. Felix, and D. Sanders, Proc. SPIE 9777, 97771U (2015).

    Google Scholar 

  10. G.E. Stein, N. Mahadevapuram, and I. Mitra, J. Polym. Sci., Part B: Polym. Phys. 53, 96 (2015).

    Article  Google Scholar 

  11. S.H. Kim, M.J. Misner, T. Xu, M. Kimura, and T.P. Russell, Adv. Mater. 16, 226 (2004).

    Article  Google Scholar 

  12. J. Bang, S.H. Kim, E. Drockenmuller, M.J. Misner, T.P. Russell, and C.J. Hawker, J. Am. Chem. Soc. 128, 7622 (2006).

    Article  Google Scholar 

  13. T.L. Morkved, M. Lu, A.M. Urbas, E.E. Ehrichs, H.M. Jaeger, P. Mansky, and T.P. Russell, Science 273, 931 (1996).

    Article  Google Scholar 

  14. E. Sivaniah, Y. Hayashi, M. Lino, T. Hashimoto, and K. Fukunaga, Macromolecules 36, 5894 (2003).

    Article  Google Scholar 

  15. P. Mansky, Y. Liu, E. Huang, T.P. Russell, and C. Hawker, Science 275, 1458 (1997).

    Article  Google Scholar 

  16. E. Han, M. Leolukman, M. Kim, and P. Gopalan, ACS Nano 4, 6527 (2010).

    Article  Google Scholar 

  17. E. Huang, L. Rockford, T.P. Russell, and C.J. Hawker, Nature 395, 757 (1998).

    Article  Google Scholar 

  18. E. Han, K.O. Stuen, Y.H. La, P.F. Nealey, and P. Gopalan, Macromolecules 41, 9090 (2008).

    Article  Google Scholar 

  19. S.M. Park, M.P. Stoykovich, R. Ruiz, Y. Zhang, C.T. Black, and P.F. Naeley, Adv. Mater. 19, 607 (2007).

    Article  Google Scholar 

  20. S.J. Ham, C.H. Shin, E. Kim, D.Y. Ryu, U.Y. Jeong, T.P. Russell, and C.J. Hawker, Macromolecules 41, 6431 (2008).

    Article  Google Scholar 

  21. H.S. Suh, H.M. Kang, P.F. Nealey, and K.H. Char, Macromolecules 43, 4744 (2010).

    Article  Google Scholar 

  22. E. Han, H.M. Kang, C.C. Liu, P.F. Nealey, and P. Gopalan, Adv. Mater. 22, 4325 (2010).

    Article  Google Scholar 

  23. G. Claveau, P. Quemere, M. Argoud, J. Hazart, P.P. Barros, A. Sarrazin, N. Posseme, R. Tiron, X. Chevalier, C. Nicolet, and C. Navarro, Proc. SPIE 9779, 97791F-1 (2016).

    Article  Google Scholar 

  24. M. Kim, E. Han, D.P. Sweat, and P. Gopalan, Soft Matter 9, 6135 (2013).

    Article  Google Scholar 

  25. G.J. Kellogg, D.G. Walton, A.M. Mayes, P. Lambooy, T.P. Russell, P.D. Gallagher, and S.K. Satija, Phys. Rev. Lett. 76, 2503 (1996).

    Article  Google Scholar 

  26. M.J. Fasolka, P. Banerjee, A.M. Mayes, G. Pickett, and A.C. Balzs, Macromolecules 33, 5702 (2000).

    Article  Google Scholar 

  27. P. Mansky, T.P. Russell, C.J. Hawker, J. Mays, D.C. Cook, and S.K. Satija, Phys. Rev. Lett. 79, 237 (1997).

    Article  Google Scholar 

  28. E. Han, K.O. Stuen, M. Leolukman, C.C. Liu, P.F. Nealey, and P. Gopalan, Macromolecules 42, 4896 (2009).

    Article  Google Scholar 

  29. P. Lambooy, T.P. Rusell, G.J. Kellogg, A.M. Mayes, P.D. Gallagher, and S.K. Satija, Phys. Rev. Lett. 72, 2899 (1994).

    Article  Google Scholar 

  30. N. Koneripalli, N. Singh, R. Levicky, F.S. Bates, P.D. Gallagher, and S.K. Satija, Macromolecules 28, 2897 (1995).

    Article  Google Scholar 

  31. X. Detter, R. Palla, I. Thomas-Boutherin, E. Pargon, G. Cunge, O. Joubert, and L. Vallier, J. Vac. Sci. Technol., B 21, 2174 (2003).

    Article  Google Scholar 

  32. H.Y. Tsai, H. Miyazoe, S. Engelmann, B. To, E. Sikorski, J. Bucchignano, D. Lkaus, C.C. Liu, J. Cheng, D. Sanders, N. Fuller, and M. Guillorn, J. Vac. Sci. Technol., B 30, 06F205 (2012).

    Article  Google Scholar 

  33. M. Delalande, G. Cunge, T. Chevolleau, P. Bezard, X. Chevalier, and R. Tiron, J. Vac. Sci. Technol., B 32, 051806 (2014).

    Article  Google Scholar 

  34. T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C.M. Stafford, E. Huang, M. Bal, M. Tuominen, C.J. Hawker, and T.P. Russell, Adv. Mater. 12, 787 (2000).

    Article  Google Scholar 

  35. C.C. Liu, P.F. Nealey, Y.H. Ting, and A.E. Wendt, J. Vac. Sci. Technol., B 25, 1963 (2007).

    Article  Google Scholar 

  36. Y.H. Ting, S.M. Park, C.C. Liu, X.S. Liu, F.J. Himpsel, P.F. Nealey, and A.E. Wendt, J. Vac. Sci. Technol., B 26, 1684 (2008).

    Article  Google Scholar 

  37. R.A. Farrell, N. Petkov, M.T. Shaw, V. Djara, J.D. Holmes, and M.A. Morris, Macromolecules 43, 8651 (2010).

    Article  Google Scholar 

  38. S. Rasappa, D. Borah, R. Senthamaraikannan, C.C. Faulkner, M.T. Shaw, P. Gleeson, J.D. Holmes, and M.A. Morris, Thin Solid Films 522, 318 (2012).

    Article  Google Scholar 

  39. M. Satake, T. Iwase, M. Kurihara, N. Negishi, Y. Tada, and H. Yoshida, J. Micro/Nanolitho. MEMS MOEMS 12, 041309 (2013).

    Article  Google Scholar 

  40. H. Yamanoto, T. Imamura, M. Omura, I. Sakai, and H. Hayashi, Jpn. J. Appl. Phys. 53, 03DD03 (2014).

    Article  Google Scholar 

  41. T. Imamura, H. Yamamoto, M. Omura, I. Sakai, and H. Hayashi, J. Vac. Sci. Technol., B 33, 061601 (2015).

    Article  Google Scholar 

  42. A. Sarrazin, N. Posseme, P.P. Barros, S. Barnola, G. Claveau, A. Gharbi, M. Argoud, G. Chamiot-maitral, R. Tiron, C. Nicole, C. Navarro, and C. Cardinaud, Proc. SPIE 9782, 97820G (2016).

    Article  Google Scholar 

  43. E. Pargon, K. Menguelti, M. Martin, A. Bazin, O. Chaix-Pluchery, C. Sourd, S. Derrough, T. Lill, and O. Joubert, J. Appl. Phys. 105, 094902 (2009).

    Article  Google Scholar 

  44. X. Wang, Y. Chen, L. Wang, and Z. Cui, Microelectron. Eng. 85, 1015 (2008).

    Article  Google Scholar 

  45. J. Doise, J. Bekaert, B.T. Chan, S.E. Hong, G.Y. Lin, and R. Gronheid, Proc. SPIE 9779, 97791G (2016).

    Article  Google Scholar 

  46. P. Pimenta Barros, A. Gharbi, A. Sarrazin, R. Tirona, N. Posseme, S. Barnoal, S. Bos, C. Tallaron, G. Claveau, X. Chevalier, M.L. Argoud, I. Servin, C. Navarro, C. Nicolet, C. Lapeyre, and C. Monget, Proc. SPIE 9428, 94280D (2015).

    Article  Google Scholar 

  47. H.Y. Tsai, H. Miyazoe, S. Engelmann, C.C. Liu, L. Gignac, J. Bucchiganno, D. Klaus, C. Breslin, E. Joseph, J. Cheng, D. Sanders, and M. Guillorn, J. Micro/Nanolitho. MEMS MOEMS 12, 041305 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Deng, W., Seow, Y.A. et al. Study of Line-Space Pitch Multiplication Using Graphoepitaxy Directed Self-Assembly for Semiconductor Applications. J. Electron. Mater. 46, 4405–4413 (2017). https://doi.org/10.1007/s11664-017-5431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5431-y

Keywords

Navigation