Skip to main content
Log in

Synthesis of High-Density Poinsettia-Like Microstructure of CuO by the Hydrothermal Method and Its Ethanol Sensing Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Highly uniform and dense poinsettia-like microstructures of CuO were synthesized by a facile hydrothermal method. The effect of the treatment time on the growth of the CuO microstructures was investigated. The CuO microflowers with diameters in the range 3–5 μm were composed of many interconnected nanoleaves (1–2 μm in diameter and 20–30 nm in thickness). A plausible growth mechanism for the formation of the CuO microstructures has been proposed and discussed. In addition, the ethanol sensing properties of the CuO microflowers were characterized at 150–350°C. The poinsettia-like microstructures of CuO exhibited better response to ethanol when compared to the sensing properties of the CuO nanoleaves. The sensing mechanism based on the models of carrier transport and leaf-to-leaf contact has been proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, ChemSusChem 2, 230 (2009).

    Article  Google Scholar 

  2. D.P. Dubal, G.S. Gund, C.D. Lokhande, and R. Holze, Mater. Res. Bull. 48, 923 (2013).

    Article  Google Scholar 

  3. K. Jindal, M. Tomar, and V. Gupta, Biosens. Bioelectron. 38, 11 (2012).

    Article  Google Scholar 

  4. Y.H. Ko, G. Nagaraju, S.H. Lee, and J.S. Yu, Mater. Lett. 117, 217 (2014).

    Article  Google Scholar 

  5. M.E. Mazhar, G. Faglia, E. Comini, D. Zappa, C. Baratto, and G. Sberveglieri, Sens. Actuators B Chem. 222, 1257 (2016).

    Article  Google Scholar 

  6. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, Mater. Sci. Eng. C 33, 91 (2013).

    Article  Google Scholar 

  7. Y. Kobayashi, Y. Yasuda, and T. Morita, J. Sci. Adv. Mater. Devices 1, 413 (2016).

    Article  Google Scholar 

  8. Y. Chang and H.C. Zeng, Cryst. Growth Des. 4, 397 (2004).

    Article  Google Scholar 

  9. X. Jiang, T. Herricks, and Y. Xia, Nano Lett. 2, 1333 (2002).

    Article  Google Scholar 

  10. R. Li, J. Du, Y. Luan, Y. Xue, H. Zou, G. Zhuang, and Z. Li, Sens. Actuators B Chem. 168, 156 (2012).

    Article  Google Scholar 

  11. Y. Zhao, J. Zhao, Y. Li, D. Ma, S. Hou, L. Li, X. Hao, and Z. Wang, Nanotechnology 22, 115604 (2011).

    Article  Google Scholar 

  12. Z. Yang, J. Xu, W. Zhang, A. Liu, and S. Tang, J. Solid State Chem. 180, 1390 (2007).

    Article  Google Scholar 

  13. J.Y. Xiang, J.P. Tu, Y.F. Yuan, X.L. Wang, X.H. Huang, and Z.Y. Zeng, Electrochim. Acta 54, 1160 (2009).

    Article  Google Scholar 

  14. H. Shi, Y. Zhao, N. Li, K. Wang, X. Hua, M. Chen, and F. Teng, Catal. Commun. 47, 7 (2014).

    Article  Google Scholar 

  15. S. Cao, H. Chen, T. Han, C. Zhao, and L. Peng, Mater. Lett. 180, 135 (2016).

    Article  Google Scholar 

  16. H. Cölfen and S. Mann, Angew. Chemie Int. Ed. 42, 2350 (2003).

    Article  Google Scholar 

  17. B.D. Cullity, Elements of X-Ray Diffraction (Boston: Addison-Wesley publishing company, Inc., 1956), p. 431.

    Google Scholar 

  18. S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.-S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.-S. Kim, J.S. Choi, and B.H. Park, Appl. Phys. Lett. 85, 5655 (2004).

    Article  Google Scholar 

  19. J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, and Y.F. Lu, Appl. Surf. Sci. 197–198, 362 (2002).

    Article  Google Scholar 

  20. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (New York: Wiley, 1962), p. 102.

    Google Scholar 

  21. T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, and J. Chen, Appl. Surf. Sci. 311, 602 (2014).

    Article  Google Scholar 

  22. Y. Cao, S. Liu, X. Jian, G. Zhu, L. Yin, L. Zhang, B. Wu, Y. Wei, T. Chen, Y. Gao, H. Tang, C. Wang, W. He, and W. Zhang, RSC Adv. 5, 34788 (2015).

    Article  Google Scholar 

  23. J.Y. Li, B.J. Xi, J. Pan, and Y.T. Qian, Adv. Mater. Res. 79–82, 1059 (2009).

    Article  Google Scholar 

  24. C. Yang, X. Su, J. Wang, X. Cao, S. Wang, and L. Zhang, Sens. Actuators B Chem. 185, 159 (2013).

    Article  Google Scholar 

  25. P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong, and S. Choopun, Ceram. Int. 35, 649 (2009).

    Article  Google Scholar 

  26. N.H. Hung, N.D. Thanh, N.H. Lam, N.D. Dien, N.D. Chien, and D.D. Vuong, Mater. Sci. Semicond. Process. 26, 18 (2014).

    Article  Google Scholar 

  27. A. Gurlo, M. Ivanovskaya, N. Bârsan, M. Schweizer-Berberich, U. Weimar, W. Göpel, and A. Diéguez, Sens. Actuators B Chem. 44, 327 (1997).

    Article  Google Scholar 

  28. A.K. Kulkarni, K.H. Schulz, T.S. Lim, and M. Khan, Thin Solid Films 345, 273 (1999).

    Article  Google Scholar 

  29. S.-B. Wang, C.-H. Hsiao, S.-J. Chang, K.-T. Lam, K.-H. Wen, S.-J. Young, S.-C. Hung, and B.-R. Huang, IEEE Sens. J. 12, 1884 (2012).

    Article  Google Scholar 

  30. D.J. Yoo, J. Electrochem. Soc. 143, L89 (1996).

    Article  Google Scholar 

  31. V.X. Hien, J.-H. Lee, J.-J. Kim, and Y.-W. Heo, Sens. Actuators B Chem. 194, 134 (2014).

    Article  Google Scholar 

  32. E.W. Thornton and P.G. Harrison, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 71, 2468 (1975).

    Google Scholar 

  33. M. Hübner, C.E. Simion, A. Tomescu-Stănoiu, S. Pokhrel, N. Bârsan, and U. Weimar, Sens. Actuators B Chem. 153, 347 (2011).

    Article  Google Scholar 

  34. J. Chen, K. Wang, L. Hartman, and W. Zhou, J. Phys. Chem. C 112, 16017 (2008).

    Article  Google Scholar 

  35. N. Barsan, D. Koziej, and U. Weimar, Sens. Actuators B Chem. 121, 18 (2007).

    Article  Google Scholar 

  36. M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).

    Article  Google Scholar 

  37. X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, and L. Zheng, Angew. Chem. Int. Ed. 48, 9180 (2009).

    Article  Google Scholar 

  38. M. Jiao, N.V. Chien, N. Van Duy, N.D. Hoa, N. Van Hieu, K. Hjort, and H. Nguyen, Mater. Lett. 169, 231 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Xuan Hien.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hien, V.X., Minh, V.D., Phuoc, L.H. et al. Synthesis of High-Density Poinsettia-Like Microstructure of CuO by the Hydrothermal Method and Its Ethanol Sensing Properties. J. Electron. Mater. 46, 3445–3452 (2017). https://doi.org/10.1007/s11664-017-5419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5419-7

Keywords

Navigation