Skip to main content
Log in

Control of Phase, Structural and Optical Properties of Tin Sulfide Nanostructured Thin Films Grown via Chemical Bath Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, nanostructured tin sulfide (SnS) thin films were synthesized on glass substrates by means of low-cost chemical bath deposition using non-toxic trisodium citrate (TSC) as complexing agent. The influence of varying molar concentration of TSC (0.15–0.21 M) on the tin sulfide phases was investigated. The structural, morphological and optical properties of the films were studied using x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption spectroscopy. The XRD patterns confirmed an orthorhombic polycrystalline structure of the as-prepared SnS thin films. The values of average crystalline size and texture coefficient of the major XRD peak increased with increasing TSC concentration. The FESEM micrographs revealed that the synthesized thin films are characterized by a flake-stack structure. The Raman spectra of the films showed the presence of a Sn2S3 peak, which gradually declined in intensity until almost disappearing as the TSC concentration increased from 0.15 M to 0.21 M. The direct energy band gaps estimated from ultraviolet–visible–near-infrared absorption spectra also varied between 1.64 eV to 1.1 eV with increasing TSC concentration from 0.15 M to 0.21 M. The results indicate the crucial role of TSC in the synthesis of SnS nanostructured thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mou, W. Zhang, J. Fan, H. Deng, and W. Chen, J. Alloys Compd. 509, 961 (2011).

    Article  Google Scholar 

  2. D.P. Singh, Sci. Adv. Mater. 2, 245 (2010).

    Article  Google Scholar 

  3. J.J. Hassan, Z. Hassan, and H. Abu-Hassan, J. Alloys Compd. 509, 6711 (2011).

    Article  Google Scholar 

  4. E. Guneria, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, and C. Gumus, Appl. Sur. Sci. 257, 1189 (2010).

    Article  Google Scholar 

  5. B.P. Bade, S.S. Garje, Y.S. Niwate, M. Afzaal, and P. O’Brien, Chem. Vap. Depos. 14, 292 (2008).

    Article  Google Scholar 

  6. B. Ghosh, R. Roy, S. Chowdhury, P. Banerjee, and S. Das, Appl. Sur. Sci. 256, 4328 (2010).

    Article  Google Scholar 

  7. J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, and J. Tate, Appl. Phys. Lett. 100, 032104 (2012).

    Article  Google Scholar 

  8. K.T. Ramakrishna Reddya, N. Koteswara Reddy, and R.W. Miles, Sol. Energy Mater. Sol. C. 90, 3041 (2006).

    Article  Google Scholar 

  9. T. Miyawaki and M. Ichimura, Mater. Lett. 61, 4683 (2007).

    Article  Google Scholar 

  10. B. Ghosh, M. Das, P. Banerjee, and S. Das, Semicond. Sci. Tech. 24, 025024 (2009).

    Article  Google Scholar 

  11. Y. Wang, H. Gong, B. Fan, and H. Guangxia, J. Phys. Chem. C 114, 3256 (2010).

    Article  Google Scholar 

  12. Z. Zaimal, M.Z. Hussin, A. Kassim, and A. Ghazali, J. Mater. Sci. Lett. 16, 1446 (1997).

    Article  Google Scholar 

  13. R.W. Miles, O.E. Ogah, G. Zoppi, and I. Forbes, Thin Solid Films 517, 4702 (2009).

    Article  Google Scholar 

  14. B. Ghosh, M. Das, P. Banerjee, and S. Das, Appl. Sur. Sci. 254, 6436 (2008).

    Article  Google Scholar 

  15. K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M.J. Aziz, M.A. Scarpulla, and T. Buonassisi, Thin Solid Films 519, 7421 (2011).

    Article  Google Scholar 

  16. A. Tanusevski and D. Poelman, Sol. Energy Mater. Sol. C. 80, 297 (2003).

    Article  Google Scholar 

  17. N.K. Reddy and K.T.R. Reddy, Thin Solid Films 325, 4 (1998).

    Article  Google Scholar 

  18. M.T.S. Nair and P.K. Nair, Semicond. Sci. Tech. 6, 132 (1991).

    Article  Google Scholar 

  19. P. Pramanik, P.K. Basu, and S. Biswas, Thin Solid Films 150, 269 (1987).

    Article  Google Scholar 

  20. D. Avellaneda, G. Delgado, M.T.S. Nair, and P.K. Nair, Thin Solid Films 515, 5771 (2007).

    Article  Google Scholar 

  21. F. Gode, E. Guneri, and O. Baglayan, Appl. Sur. Sci. 318, 227 (2014).

    Article  Google Scholar 

  22. E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, and C. Gumus, Chalcogenide Lett 7, 685 (2010).

    Google Scholar 

  23. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, and A. Walsh, Chem. Mater. 25, 4908 (2013).

    Article  Google Scholar 

  24. V. Robles, J.F. Trigo, C. Guillén, and J. Herrero, J. Mater. Sci. 48, 3943 (2013).

    Article  Google Scholar 

  25. R.E. Banai, J.C. Cordell, G. Lindwall, N.J. Tanen, S.-L. Shang, J.R. Nasr, Z.K. Liu, J.R.S. Brownson, and M.W. Horn, J. Elctron. Mater. 45, 499 (2016).

    Article  Google Scholar 

  26. M. Calixto-Rodriguez, H. Martinez, A. Sanchez-Juarez, J. Campos-Alvarez, and A. Tiburcio-Silver, Thin Solid Films 517, 2497 (2009).

    Article  Google Scholar 

  27. S. Polivtseva, I. Oja Acik, A. Katerski, A. Mere, V. Mikli, and M. Krunks, Energy Proc. 60, 156 (2014).

    Article  Google Scholar 

  28. L.S. Price, I.P. Parkin, A.M.E. Hardy, and R.J.H. Clark, Chem. Mater. 11, 1792 (1999).

    Article  Google Scholar 

  29. S. Sohilaa, M. Rajalakshmib, C. Ghosh, A.K. Arora, and C. Muthamizhchelvan, J. Alloys Compd. 509, 5843 (2011).

    Article  Google Scholar 

  30. K.T.R. Reddy and P.P. Reddy, Mater. Lett. 56, 108 (2002).

    Article  Google Scholar 

  31. S. Mushtaq, B. Ismail, M.A. Zeb, N.J. Suthan Kissinger, and A. Zeb, J. Alloys Compd. 632, 723 (2015).

    Article  Google Scholar 

  32. H.S. Al-Salman and M.J. Abdullah, Superlattices Microst 60, 349 (2013).

    Article  Google Scholar 

  33. A.M. Selman and Z. Hassan, Superlattices Microst 83, 549 (2015).

    Article  Google Scholar 

  34. L.L. Cheng, M.H. Liu, M.X. Wang, S.C. Wang, G.D. Wang, Q.Y. Zhou, and Z.Q. Chen, J. Alloys Compd. 545, 122 (2012).

    Article  Google Scholar 

  35. M. Haj Lakhdar, T. Larbi, B. Ouni, and M. Amlouk, J. Alloys Compd. 579, 198 (2013).

    Article  Google Scholar 

  36. R. Boughalmi, A. Boukhachem, M. Kahlaoui, H. Maghraoui, and M. Amlouk, Mater. Sci. Semicond. Proc. 26, 593 (2014).

    Article  Google Scholar 

  37. H.-Y. He, J. Fei, and J. Lu, Mater. Sci. Semicond. Proc. 24, 90 (2014).

    Article  Google Scholar 

  38. Y. Jayasree, U. Chalapathi, and V. Sundara Raja, Thin Solid Films 537, 149 (2013).

    Article  Google Scholar 

  39. N.R. Mathews, H.B.M. Anaya, M.A. Cortes-Jacome, C. Angeles-Chavez, and J.A. Toledo-Antonio, J. Electrochem. Soc. 157, 337 (2010).

    Article  Google Scholar 

  40. M.S. Mahdi, K. Ibrahim, A. Hmood, N.M. Ahmed, S.A. Azzez, and F.I. Mustafa, RSC Adv. 6, 114980 (2016).

    Article  Google Scholar 

  41. M. Vasudeva Reddy, G. Sreedevi, C. Park, R.W. Miles, and K.T. Ramakrishna Reddy, Curr. Appl. Phys. 15, 588 (2015).

    Article  Google Scholar 

  42. P.M. Nikolic, P. Lj Miljkovic, B. Mihajlovic, and B. Lavrencic, J. Phys. C Solid Status Phys. 10, 289 (1977).

    Article  Google Scholar 

  43. M.G. Sousa, A.F. da Cunha, and P.A. Fernandes, J. Alloys Compd. 592, 80 (2014).

    Article  Google Scholar 

  44. H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, and M. Cardona, Phys. Rev. B 15, 2177 (1977).

    Article  Google Scholar 

  45. A. Supee, Y. Tanaka, and M. Ichimura, Mater. Sci. Semicond. Proc. 38, 290 (2015).

    Article  Google Scholar 

  46. I.P. Parkin, L.S. Price, T.G. Hibbert, and K.C. Molloy, J. Mater. Chem. 11, 1486 (2001).

    Article  Google Scholar 

  47. C. Wanga, K. Tanga, Q. Yanga, and Y. Qiana, Chem. Phys. Lett. 357, 371 (2002).

    Article  Google Scholar 

  48. S.W. Shin, G.L. Agawane, M.G. Gang, A.V. Moholkar, J.-H. Moon, J.H. Kim, and J.Y. Lee, J. Alloys Compd. 526, 25 (2012).

    Article  Google Scholar 

  49. A. Akkari, C. Guasch, N. Kamoun-Turki, and J. Tauu, J. Alloys Compd. 490, 180 (2010).

    Article  Google Scholar 

  50. P. Jain and P. Arun, Thin Solid Films 548, 241 (2013).

    Article  Google Scholar 

  51. S. Gedi, V.R. Minnam Reddy, C. Park, J.C. Wook, and K.T.R. Reddy, Opt. Mater. 42, 468 (2015).

    Article  Google Scholar 

  52. S. Cheng, Y. He, and G. Chen, Mater. Chem. Phys. 110, 449 (2008).

    Article  Google Scholar 

  53. C. Gao, H. Shen, and L. Sun, Appl. Sur. Sci. 257, 6750 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Nano-Optoelectronics Research and Technology Laboratory (N.O.R.) of the School of Physics, Universiti Sains Malaysia, for the help extended the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Mahdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, M.S., Ibrahim, K., Hmood, A. et al. Control of Phase, Structural and Optical Properties of Tin Sulfide Nanostructured Thin Films Grown via Chemical Bath Deposition. J. Electron. Mater. 46, 4227–4235 (2017). https://doi.org/10.1007/s11664-017-5373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5373-4

Keywords

Navigation