Skip to main content
Log in

Effect of annealing on structural and optical properties of indium sulfide thin layers produced by chemical bath deposition method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Indium sulfide thin films were prepared by chemical bath deposition method on glass substrates for about 40 min as deposition time and 60 °C as deposition temperature. The films were post-annealed at different temperatures such as 100 °C, 200 °C, 300 °C and 400 °C, for about 1 h. Structural and optical properties of In2S3 thin films after post-annealing process have been investigated. The crystallinity and nanostructures of the films were studied by using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and atomic force microscopy analysis. Optical reflectance and transmittance of layers were measured in the wavelength of 300–1100 nm by spectrophotometer instrument. Kramers–Kronig relations were used to calculate the optical constants. The X-ray diffraction measurements showed transformation of an amorphous nature to a crystalline structure by increasing the annealing temperature. The atomic force microscopy images showed by increasing the annealing temperature, the roughness of the thin films increased. The scanning electron microscopy images revealed that growth rate increased consistently with the increase in annealing temperature and well-dispersed quasi-spherical nanoparticles with high agglomeration rate are formed at 400 °C. The energy-dispersive X-ray spectroscopy results show reduction in the S/In ratio from 1.61 to 1.49 when annealing temperature increased. Optical results showed the highest optical band gap of 3.65 eV was achieved at the highest annealing temperature (400 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J George, K S Joseph, B Pradeep, T I Palson Phys. Stat. Sol. A 106 123 (1988)

    Article  Google Scholar 

  2. E B Yousfi, T Asikainen, V Pietu, P Cowache, M Powlla, D Lincot Thin Solid Films 361 183 (2000)

    Article  ADS  Google Scholar 

  3. N Barreau, J C Bernede, S MarsilIac J. Cryst. Growth 241 51 (2002)

    Article  ADS  Google Scholar 

  4. M I Hossain Chalcogenide Lett. 9 185 (2012)

  5. M Ichimura, A Nakamura, K Takenchi, E Arai Thin Solid Films 384 157 (2001)

    Article  ADS  Google Scholar 

  6. R Kumareasan, M Ichimura, N Stato, P Ramasamy Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 96 37 (2002)

  7. N Kamoun, R Bennaceur, M Amlouk, S Belgacem, N Mliki, J M Frigerio, M C Theye Phys. Status Solidi A Appl. Res. 169 97 (1998)

  8. N Bouguila, H Bouzouita, E Lacaze, A BelHadj Amara, H Bouchriha, A Dhouib J. Physique III 7 1647 (1997)

    ADS  Google Scholar 

  9. N Naghavi, R Henriquez, V Laptev, D Lincot Appl. Surf. Sci. 222 65 (2004)

    Article  ADS  Google Scholar 

  10. T Asikainen, M Ritila, M Leskela Appl. Surf. Sci. 82/83 122 (1994)

  11. J.George, K S Joseph, B Prodeep, T I Palson Phys. Status Solidi A Appl. Res. 106 123 (1988)

  12. A A Elshazly, D Abdelkady, H S Metoually, M A M. Segman J. Phys. Condens. Mater. 10 5943 (1998)

    Article  ADS  Google Scholar 

  13. C Guille´an, T Garico, J Herrero, M T Gutie´rrez, F Briones Thin Solid Films 112 451 (2004)

  14. J H Kim, D Shin, B T Ahn Curr. Appl. Phys. 16 1040 (2016)

    Article  ADS  Google Scholar 

  15. H Kangarlou, M Motallebi Agh Gonbad, A Abdollahi Mater. Sci. Semicond. Process. 1 1 (2015)

    Google Scholar 

  16. S Rasool, K Saritha, K T Ramakrishna Reddy, M S Tivanov, A V Trofimova, S E Tikoto, L Bychto, A Patryn, M Maliński, V F Gremenok Curr. Appl. Phys. 11 16 (2018)

  17. O A Castelo-Gonaz´ lez, H C Santacruz-Ortega, M A Quevedo-Lo´pez M Sotelo-Lerma J. Electr. Mater. 41 695 (2012)

  18. E Jalili, H Kangarlou, P Esmaili Optik 127 11235 (2016)

    Article  Google Scholar 

  19. D Diehl, R Nitsche J. Crystal Growth 20 38 (1973)

    Article  ADS  Google Scholar 

  20. K S J B M Kambas Phys. Status Solidi (b) 105 291 (1981)

  21. M T Bhatti, A M Rana, A F Khan Mater. Chem. Phys. 84 126 (2004)

    Article  Google Scholar 

  22. E Li ta, J E Sanchez J. Appl. Phys. 85 876 (1999)

  23. G B Arfken, H J Weber Mathematical methods for physics (Port Harcourt: Harcourt Science and Technology Company) (2001)

  24. E D Palik Handbook of optical constants of solids (Cambridge: Courtesy Academic Press Inc) (1985)

  25. LWard The optical constants of bulk materials and films (Philadelphia: Institute of Physics) (1988)

  26. C C Ting, S Y Chen J. Appl. Phys. 88 4628 (2000)

    Article  ADS  Google Scholar 

  27. G Zhang, K Lu, X Zhang, W Yuan, M Shi, H Ning, R Tao, X Liu, R Yao, J. Peng Micromachines 9 377 (2018)

    Article  Google Scholar 

  28. S. Asgary, M. Hantehzadeh, M. Ghoranneviss, A. Boochani Rare Metals 40 1 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Esmaili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri Sarvi, M., Esmaili, P. & Asgary, S. Effect of annealing on structural and optical properties of indium sulfide thin layers produced by chemical bath deposition method. Indian J Phys 94, 1545–1552 (2020). https://doi.org/10.1007/s12648-019-01601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01601-9

Keywords

PACS Nos.

Navigation