Skip to main content
Log in

Prismatic Slip in PVT-Grown 4H-SiC Crystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Basal plane slip is the most frequently observed deformation mechanism in 4H-type silicon carbon (4H-SiC) single crystals grown by the physical vapor transport (PVT) method. However, it was recently reported that dislocations in such crystals can also glide in prismatic slip systems. In this study, we observed nonuniform distributions of three sets of prismatic dislocations in a commercial 4H-SiC substrate wafer. The nonuniformity is a result of the distribution of resolved shear stress on each prismatic slip system caused by radial thermal gradients in the growing crystal boule. A radial thermal model has been developed to estimate the thermal stress across the entire area of the crystal boule during PVT growth. The model results show excellent agreement with the observations, confirming that radial thermal gradients play a key role in activating prismatic slip in 4H-SiC during bulk growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ha, N.T. Nuhfer, G.S. Rohrer, M. De Graef, and M. Skowronski, J. Electron. Mater. 29, L5 (2000).

    Article  Google Scholar 

  2. H. Wang, S. Byrappa, F. Wu, B. Raghothamachar, M. Dudley, E. Sanchez, D. Hansen, R. Drachev, S.G. Mueller, and M.J. Loboda, Mater. Sci. Forum 717–720, 327 (2012).

    Article  Google Scholar 

  3. H. Wang, Study of Growth Mechanism and Defect Origins in 4H-Silicon Carbide Substrate and Homoepitaxy. PhD dissertation, State University of New York at Stony Brook. ProQuest Dissertations Publishing, pp. 66–69, 2014. (Publication No. 3681333).

  4. M. Dudley, H. Wang, J. Guo, Y. Yang, B. Raghothamachar, J. Zhang, B. Thomas, G.Y. Chung, E. Sanchez, D.M. Hansen, and S.G. Mueller, MRS Adv. 1, 91 (2016).

    Article  Google Scholar 

  5. A.R. Gachkevich and V.Ya. Boichuk, Sov. Appl. Mech. 23, 328 (1987).

    Article  Google Scholar 

  6. M. Selder, L. Kadinski, F. Durst, T. Straubinger, and D. Hofmann, Mater. Sci. Eng. B 61–62, 93 (1999).

    Article  Google Scholar 

  7. Z. Li and R.C. Bradt, J. Appl. Phys. 60, 612 (1986).

    Article  Google Scholar 

  8. J.B. Wachtman Jr, W.E. Tefft, D.G. Lam Jr., and C.S. Apstein, Phys. Rev. 122, 1754 (1961).

    Article  Google Scholar 

  9. O.L. Anderson, Phys. Rev. 144, 553 (1966).

    Article  Google Scholar 

  10. A. Wolfenden, J. Mater. Sci. 32, 2275 (1997).

    Article  Google Scholar 

  11. A.V. Samant, M.H. Hong, and P. Pirouz, Phys. Stat. Sol. B 222, 75 (2000).

    Article  Google Scholar 

  12. R.V. Drachev, D.M. Hansen, and M.J. Loboda, Mater. Res. Soc. Symp. Proc. 1246, 15 (2010).

    Article  Google Scholar 

  13. M. Dudley, S. Byrappa, H. Wang, F. Wu, Y. Zhang, B. Raghothamachar, G. Choi, E.K. Sanchez, D. Hansen, R. Drachev, and M.J. Loboda, Mater. Res. Soc. Symp. Proc. 1246, 29 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiu Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Yang, Y., Raghothamachar, B. et al. Prismatic Slip in PVT-Grown 4H-SiC Crystals. J. Electron. Mater. 46, 2040–2044 (2017). https://doi.org/10.1007/s11664-016-5118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5118-9

Keywords

Navigation