Skip to main content
Log in

Synthesis, Characterization and Electrochemical Sensing of Tb2O3 Nanotubes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

One dimensional terbium oxide (Tb2O3) nanotubes have been synthesized by using surfactant free precipitation method and investigated its non-enzymatic electrochemical detection for hydrogen peroxide (H2O2). The structural analysis and x-ray diffraction data confirmed the formation of cubic phase Tb2O3 in the synthesized Tb2O3 nanotubes. The optical property of the synthesized product was investigated by ultraviolet spectroscopy and photoluminescence (PL) studies. The PL spectrum of Tb2O3 nanotubes exhibited a strong green luminescence corresponding to 5D4 → 7F5 transition of Tb3+ ions. The non-enzymatic hydrogen peroxide (H2O2) sensing of Tb2O3 nanotubes/carbon paper modified electrodes in 1 M KCl electrolyte was carried out using cyclic voltammetry and amperometric (it) analysis. The enhanced electrocatalytic behavior was observed for Tb2O3 nanotubes with an excellent sensitivity of 875 μA mM−1 cm−2, linear ranges of 0.5–5 mM and a low detection limit of 5 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yao, J. Xu, Y. Wang, X. Chen, Y. Xu, and S. Hu, Anal. Chim. Acta 557, 78 (2006).

    Article  Google Scholar 

  2. C. Matsubara, N. Kawamoto, and K. Takamura, Analyst 117, 1781 (1992).

    Article  Google Scholar 

  3. N.V. Klassen, D. Marchington, and H.C.E. Mcgowan, Anal. Chem. 66, 2921 (1994).

    Article  Google Scholar 

  4. J. Li, P.K. Dasgupta, and G.A. Tarver, Anal. Chem. 75, 1203 (2003).

    Article  Google Scholar 

  5. W. Shi, X. Zhang, S. He, and Y. Huang, Chem. Commun. 47, 10785 (2011).

    Article  Google Scholar 

  6. Y. Lin, X. Cui, and L. Li, Electrochem. Commun. 7, 166 (2005).

    Article  Google Scholar 

  7. Y. Lin, F. Lu, Y. Tu, and Z. Ren, Nano Lett. 4, 191 (2003).

    Article  Google Scholar 

  8. S. Mani, V. Vediyappan, S.M. Chen, R. Madhu, V. Pitchaimani, J.Y. Chang, and S.B. Liu, Sci. Rep. 6, 24128 (2016).

    Article  Google Scholar 

  9. Z. Gao, J. Liu, J. Chang, D. Wu, J. He, K. Wang, F. Xu, and K. Jiang, Cryst. Eng. Comm. 14, 6639 (2012).

    Article  Google Scholar 

  10. B. Luo, X. Li, J. Yang, X. Li, L. Xue, X. Li, J. Gu, M. Wang, and L. Jiang, Anal. Methods 6, 1114 (2014).

    Article  Google Scholar 

  11. X. Feng, X. Li, H. Shi, H. Huang, X. Wu, and W. Song, Anal. Chim. Acta 852, 37 (2014).

    Article  Google Scholar 

  12. E. Kim, N.S. Arul, L. Yang, and J.I. Han, RSC Adv. 5, 76729 (2015).

    Article  Google Scholar 

  13. M. Sreejesh, N.M. Huang, and H.S. Nagaraja, Electrochim. Acta 160, 94 (2015).

    Article  Google Scholar 

  14. M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Nanoscale 7, 8920 (2015).

    Article  Google Scholar 

  15. Y. Pan, Z. Hou, W. Yi, W. Zhu, F. Zeng, and Y.N. Liu, Talanta 141, 86 (2015).

    Article  Google Scholar 

  16. R. Haugsrud and Y. Larring, Solid State Ionics 176, 2957 (2005).

    Article  Google Scholar 

  17. H.W. Song, L.X. Yu, L.M. Yang, and Z.Z. Lu, J. Nanosci. Nanotechnol. 5, 1519 (2005).

    Article  Google Scholar 

  18. J. Li, L.G. Lu, B. Xie, Y. Wang, Y. Guo, and Y. Guo, J. Rare Earth 11, 1096 (2012).

    Article  Google Scholar 

  19. M.K. Devaraju, S. Yin, and T. Sato, Nanotechnology 20, 305302 (2009).

    Article  Google Scholar 

  20. T.M. Pan, C.W. Wang, Y.S. Huang, W.H. Weng, and S.T. Pang, J. Electrochem. Soc. 162, B83 (2015).

    Article  Google Scholar 

  21. T.M. Pan, F.H. Chen, and J.S. Jung, J. Appl. Phys. 108, 074501 (2010).

    Article  Google Scholar 

  22. S.V. Belaya, V.V. Bakovets, I.P. Asanov, I.V. Korolkov, and V.S. Sulyaeva, Chem. Vap. Depos. 21, 150 (2015).

    Article  Google Scholar 

  23. P. Veber, M. Velazguez, G. Gadret, D. Rytz, M. Peltz, and R. Decourt, Cryst. Eng. Comm. 17, 492 (2015).

    Article  Google Scholar 

  24. Q. Tang, J. Shen, W. Zhou, W. Zhang, W. Yu, and Y. Qian, J. Mater. Chem. 13, 3103 (2003).

    Article  Google Scholar 

  25. A.B. Panda, G. Glaspell, and M.S. El-Shall, J. Phys. Chem. C 111, 1861 (2007).

    Article  Google Scholar 

  26. Y. Xiao, S. You, Y. Yao, T. Zheng, C. Lin, S.V. Roth, P.M. Buschbaum, W. Steffen, L.D. Sun, C.H. Yan, J.S. Gutmann, M. Yin, J. Fu, and Y.J. Cheng, Eur. J. Inorg. Chem. 2013, 1251 (2013).

    Article  Google Scholar 

  27. T.H. Tran, M.M. Lezhnina, and U. Kynast, J. Mater. Chem. 22, 12819 (2011).

    Article  Google Scholar 

  28. N.S. Arul, D. Mangalaraj, and T.W. Kim, Appl. Surf. Sci. 349, 459 (2015).

    Article  Google Scholar 

  29. N.S. Arul, D. Mangalaraj, J.I. Han, and L.S. Cavalcante, RSC Adv. 5, 70558 (2015).

    Article  Google Scholar 

  30. N.S. Arul, D. Mangalaraj, R. Ramachandran, A.N. Grace, and J.I. Han, J. Mater. Chem. A 3, 15248 (2015).

    Article  Google Scholar 

  31. W.T. Carnell, P.R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4447 (1968).

    Article  Google Scholar 

  32. D.C. Krupa and D.M. Mahoney, J. Appl. Phys. 43, 2314 (1972).

    Article  Google Scholar 

  33. A. Podhorodecki, M. Nyk, J. Misiewicz, and W. Strek, J. Lumin. 126, 219 (2007).

    Article  Google Scholar 

  34. P.A.M. Berdowski, M.J.J. Lammers, and G. Blasse, Chem. Phys. Lett. 113, 387 (1985).

    Article  Google Scholar 

  35. Y. Zhang, G.K. Das, R. Xu, and T.T.Y. Tan, J. Mater. Chem. 19, 3696 (2009).

    Article  Google Scholar 

  36. H. Razmi and R.M. Rezaei, Microchim. Acta 171, 257 (2010).

    Article  Google Scholar 

  37. F.H. Li, W. Wang, J.P. Gao, and S.Y. Wang, J. Electrochem. Soc. 156, D84–D91 (2009).

    Article  Google Scholar 

  38. S. Liu, B. Yu, F. Li, Y. Ji, and T. Zhang, Electrochim. Acta 141, 161 (2014).

    Article  Google Scholar 

  39. K.K. Lee, P.Y. Loh, C.H. Sow, and W.S. Chin, Biosens. Bioelectron. 39, 255 (2013).

    Article  Google Scholar 

  40. P. Gao and D. Liu, Sensor Actuators B 208, 346 (2015).

    Article  Google Scholar 

  41. C. Hou, Q. Xu, L. Yin, and X. Hu, Analyst 137, 5803 (2012).

    Article  Google Scholar 

  42. L. Zhang, Y. Zhai, N. Gao, D. Wen, and S. Dong, Electrochem. Commun. 10, 1524 (2008).

    Article  Google Scholar 

  43. K. Yuan, Y. Ni, and L. Zhang, J. Alloys Compd. 532, 10 (2012).

    Article  Google Scholar 

  44. M.R. Mahmoudian, Y. Alias, W.J. Basirun, P.M. Woi, and M. Sookhakian, Sens. Actuators B 201, 526 (2014).

    Article  Google Scholar 

  45. Y. Lia, X. Niu, J. Tang, M. Lana, and H. Zhao, Electrochim. Acta 130, 1 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Sabari Arul or D. Mangalaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabari Arul, N., Vidya, J., Ramya, V. et al. Synthesis, Characterization and Electrochemical Sensing of Tb2O3 Nanotubes. J. Electron. Mater. 46, 1072–1078 (2017). https://doi.org/10.1007/s11664-016-5048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5048-6

Keywords

Navigation