Skip to main content
Log in

Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Weis and T. Gaylord, Appl. Phys. A Mater. Sci. Process. 37, 191 (1985).

    Article  Google Scholar 

  2. K.K. Wong, Properties of Lithium Niobate, EMIS Datareview Series No. 28 (London: Institution of Electrical Engineers, and INSPEC, 2002)

  3. D.R. Morgan, Ultrasonics 11, 121 (1973).

    Article  Google Scholar 

  4. R.V. Schmidt, I.P. Kaminow, and J.R. Carruthers, Appl. Phys. Lett. 23, 417 (1973).

    Article  Google Scholar 

  5. E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).

    Article  Google Scholar 

  6. M.N. Armenise, IEEE Proc. J. Optoelectron. 135, 85 (1988).

    Article  Google Scholar 

  7. M. Houe and P.D. Townsend, Appl. Phys. 28, 1747 (1995).

    Google Scholar 

  8. G. Poberaj, H. Hu, W. Sohler, and P. Günter, Laser Photonics Rev. 6, 488 (2012).

    Article  Google Scholar 

  9. T. Kanata, Y. Kobayashi, and K. Kubota, J. Appl. Phys. 62, 2989 (1987).

    Article  Google Scholar 

  10. N. Fujimura, T. Ito, and M. Kakinoki, J. Cryst. Growth 115, 821 (1991).

    Article  Google Scholar 

  11. M. Shimizu, Y. Furushima, T. Nishida, and T. Shiosaki, Jpn. J. Appl. Phys. 32, 4111 (1993).

    Article  Google Scholar 

  12. P.R. Meek, L. Holland, and P.D. Townsend, Thin Solid Films 141, 251 (1986).

    Article  Google Scholar 

  13. J.J. Kingston, D.K. Fork, F. Leplingard, and F.A. Ponce, Mater. Res. Soc. Symp. Proc. 341, 289 (1994).

    Article  Google Scholar 

  14. S. Ono, O. Bose, W. Unger, Y. Takeichi, and S. Hirano, J. Am. Ceram. Soc. 81, 1749 (1998).

    Article  Google Scholar 

  15. Y. Shibata, K. Kaya, K. Akashi, M. Kanai, T. Kawai, and S. Kawai, J. Appl. Phys. 77, 1498 (1995).

    Article  Google Scholar 

  16. S.-H. Lee, T.K. Song, T.W. Noh, and J.-H. Lee, Appl. Phys. Lett. 67, 43 (1995).

    Article  Google Scholar 

  17. F. Veignant, M. Gandais, P. Aubert, and G. Garry, J. Cryst. Growth 196, 141 (1999).

    Article  Google Scholar 

  18. K. Matsubara, S. Niki, M. Watanabe, P. Fons, K. Iwata, and A. Yamada, Appl. Phys. A Mater. Sci. Process. 69, S679 (1999).

    Article  Google Scholar 

  19. H. Tamada, A. Yamada, and M. Saitoh, J. Appl. Phys. 70, 2536 (1991).

    Article  Google Scholar 

  20. S. Miyazawa, S. Fushimi, and S. Kondo, Appl. Phys. Lett. 26, 8 (1975).

    Article  Google Scholar 

  21. S.Y. Lee and R.S. Feigelson, J. Cryst. Growth 186, 594 (1998).

    Article  Google Scholar 

  22. R.S. Feigelson, J. Cryst. Growth 166, 1 (1996).

    Article  Google Scholar 

  23. A.A. Wernberg, H.J. Gysling, A.J. Filo, and T.N. Blanton, Appl. Phys. Lett. 62, 946 (1993).

    Article  Google Scholar 

  24. A. Dabirian, S. Harada, Y. Kuzminykh, S.C. Sandu, E. Wagner, G. Benvenuti, P. Brodard, S. Rushworth, P. Muralt, and P. Hoffmann, J. Electrochem. Soc. 158, D72 (2011).

    Article  Google Scholar 

  25. R.A. Betts and C.W. Pitt, Electron. Lett. 21, 960 (1985).

    Article  Google Scholar 

  26. W.A. Doolittle, A.G. Carver, and W. Henderson, J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct. 23, 1272 (2005).

    Article  Google Scholar 

  27. W. Doolittle, A. Carver, W. Henderson, and W. Calley, ECS Trans. 2, 103 (2006).

    Article  Google Scholar 

  28. J.D. Greenlee, W.L. Calley, W. Henderson, and W.A. Doolittle, Phys. Status Solidi 9, 155 (2012).

    Article  Google Scholar 

  29. Z. Sitar, F. Gitmans, W. Liu, and P. Gunter, Mater. Res. Soc. Symp. Proc. 401, 255 (1996).

    Article  Google Scholar 

  30. X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, J. Appl. Phys. 90, 5274 (2001).

    Article  Google Scholar 

  31. W.E. Henderson, W.L. Calley, A.G. Carver, H. Chen, and W.A. Doolittle, J. Cryst. Growth 324, 134 (2011).

    Article  Google Scholar 

  32. M.B. Tellekamp, J.D. Greenlee, J.C. Shank, and W.A. Doolittle, J. Cryst. Growth 425, 225 (2015).

    Article  Google Scholar 

  33. K.K. Lee, G. Namkoong, S.M. Madison, S.E. Ralph, W.A. Doolittle, M. Losurdo, G. Bruno, and H.K. Cho, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 140, 203 (2007).

    Article  Google Scholar 

  34. K.K. Lee, G. Namkoong, W.A. Doolittle, M. Losurdo, G. Bruno, and D.H. Jundt, J. Vac. Sci. Technol., B 24, 2093 (2006).

    Article  Google Scholar 

  35. Y.S. Kim and R.T. Smith, J. Appl. Phys. 40, 4637 (1969).

    Article  Google Scholar 

  36. E.R. Dobrovinskaya, L.A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer US, 2009)

  37. Z. Li and R.C. Bradt, J. Appl. Phys. 69, 863 (1986).

    Google Scholar 

  38. F. Campbell, ASM Int. 05224G, 672 (2008).

    Google Scholar 

  39. S.R. Lee, A.M. West, A.A. Allerman, K.E. Waldrip, D.M. Follstaedt, P.P. Provencio, D.D. Koleske, and C.R. Abernathy, Appl. Phys. Lett. 86, 1 (2005).

    Google Scholar 

  40. K. Lee (Thesis, Georgia Institute of Technology, Atlanta, GA, 2009)

Download references

Acknowledgement

This work was supported by the Defense Threat Reduction Agency (DTRA), Basic Research Award # HDTRA-1-12-1-0031 administered by Dr. Jacob Calkins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Alan Doolittle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tellekamp, M.B., Shank, J.C., Goorsky, M.S. et al. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3 . J. Electron. Mater. 45, 6292–6299 (2016). https://doi.org/10.1007/s11664-016-4986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4986-3

Keywords

Navigation