Skip to main content
Log in

Dimensionless Model of a Thermoelectric Cooling Device Operating at Real Heat Transfer Conditions: Maximum Cooling Capacity Mode

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j′ are estimated in range of 0.38–0.44 and 0.48–0.95, respectively, for dimensionless conductance K′ = 5–100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ebling, K. Bartholome, M. Bartel, and M. Jagle, J. Electron. Mater. 39, 1376 (2010).

    Article  Google Scholar 

  2. G.-Y. Huang, C.-T. Hsu, and D.-J. Yao, J. Electron. Mater. 43, 2337 (2014).

    Article  Google Scholar 

  3. O. Hogblom and R. Andersson, J. Electron. Mater. 43, 2247 (2014).

    Article  Google Scholar 

  4. E. Sandoz-Rosado and R. Stevens, J. Electron. Mater. 39, 1848 (2010).

    Article  Google Scholar 

  5. W. Li, M.C. Paul, A. Montecucco, A.R. Knox, J. Siviter, N. Sellami, X. Meng, E. Fernandez, T.K. Mallick, P. Mullen, A. Ashraf, A. Samarelli, L.F. Llin, D.J. Paul, D.H. Gregory, M. Gao, T. Sweet, F. Azough, R. Lowndes, and R. Freer, Energy Proced. 75, 633 (2015).

    Article  Google Scholar 

  6. L. Chen, J. Li, F. Sun, and C. Wu, Appl. Energy 82, 300 (2005).

    Article  Google Scholar 

  7. S. Lineykin and S. Ben-Yaakov, IEEE Trans. Ind. Appl. 43, 505 (2007).

    Article  Google Scholar 

  8. J. Chen, Z. Yan, and L. Wu, J. Appl. Phys. 79, 8823 (1996).

    Article  Google Scholar 

  9. A. Chakraborty, B.B. Saha, S. Koyama, and K.C. Ng, Int. J. Heat Mass Transf. 49, 3547 (2006).

    Article  Google Scholar 

  10. H. Lee, Energy 56, 61 (2013).

    Article  Google Scholar 

  11. M.-J. Huang, R.-H. Yen, and A.-B. Wang, Int. J. Heat Mass Transf. 48, 413 (2005).

    Article  Google Scholar 

  12. W.-H. Chen, C.-Y. Liao, and C.-I. Hung, Appl. Energy 89, 464 (2012).

    Article  Google Scholar 

  13. S. Lineykin and S. Ben-Yaakov, IEEE Power Electron. Lett. 3.2, 63 (2005).

    Article  Google Scholar 

  14. D. Zhao and G. Tan, Appl. Therm. Eng. 66, 15 (2014).

    Article  Google Scholar 

  15. T. Han, G. Gong, Z. Liu, and L. Zhang, Appl. Therm. Eng. 67, 529 (2014).

    Article  Google Scholar 

  16. L. Zhu, H. Tan, and J. Yu, Energy Convers. Manag. 76, 685 (2013).

    Article  Google Scholar 

  17. H. Lee, Appl. Energy 106, 79 (2013).

    Article  Google Scholar 

  18. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited, 1957).

    Google Scholar 

  19. L.I. Anatychuk and V.A. Semenyuk, Optimal Control of Properties of Thermoelectric Materials and Devices (Chernivtsi: Prut, 1992) (in Russian).

    Google Scholar 

  20. B.J. Huang, C.J. Chin, and C.L. Duang, Int. J. Refrig. 23.3, 208 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Melnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, A.A., Kostishin, V.G. & Alenkov, V.V. Dimensionless Model of a Thermoelectric Cooling Device Operating at Real Heat Transfer Conditions: Maximum Cooling Capacity Mode. J. Electron. Mater. 46, 2737–2745 (2017). https://doi.org/10.1007/s11664-016-4952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4952-0

Keywords

Navigation