Skip to main content
Log in

Dimensionless Mathematical Model of a Thermoelectric Cooler: ΔTmax Mode

  • XVI INTERNATIONAL CONFERENCE  “THERMOELECTRICS AND THEIR APPLICATIONS–2018” (ISCTA 2018), ST. PETERSBURG, OCTOBER 8–12, 2018
  • Published:
Semiconductors Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The thermal resistances on the cold and hot sides substantially affect the output characteristics of thermoelectric devices. A dimensionless mathematical model of a thermoelectric cooler, which makes it possible to calculate device parameters, such as the optimal thermal resistance ratio on the cold and hot sides as well as the optimal current taking into account the influence of thermal resistances, is presented. The maximal temperature difference ΔTmax mode is considered. It is shown that the optimal cooler parameters are different for implementation of the ΔTmax and Qmax modes. The determining factor for the ΔTmax mode is the influence of the thermal resistance on the hot side, and the optimal current is 0.4–0.7 of the maximal current in most cases for the material with ZT = 1. It is shown that an additional increase in ΔTmax of a cooler is attained with a decrease in the thermal conductivity of the thermoelectric material due to a decrease in the influence of the thermal resistance on the hot side besides the effect from an increase in ZT. An increase in the length of thermoelectric legs has the same positive effect of an increase in ΔTmax of a cooler, while a decrease in the leg length negatively affects ΔTmax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. M. Rowe, Int. J. Inn. Energy Syst. Power 1, 13 (2006).

    Google Scholar 

  2. T. M. Tritt and M. A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  3. D. M. Rowe, Renewable Energy 16, 1251 (1999).

    Article  Google Scholar 

  4. B. I. Ismail and W. H. Ahmed, Rec. Pat. Elec. Electron. Eng. 2, 27 (2009).

    Google Scholar 

  5. E. N. Kablov, Aviats. Mater. Tekhnol. 1 (34), 3 (2015).

    Google Scholar 

  6. E. N. Kablov, O. G. Ospennikova, and A. V. Vershkov, Tr. VIAM 2, 3 (2013).

    Google Scholar 

  7. E. N. Kablov, Ekspert 15 (941), 49 (2015).

    Google Scholar 

  8. E. N. Kablov, Aviats. Mater. Tekhnol. S1, 3 (2013).

    Google Scholar 

  9. Yu. V. Loshchinin, Aviats. Mater. Tekhnol. 2 (47), 41 (2017).

    Google Scholar 

  10. M. S. Dresselhaus and I. L. Thomas, Nature (London, U.K.) 414 (6861), 332 (2001).

    Article  ADS  Google Scholar 

  11. A. Melnikov, Metal Powder Rep. 71, 279 (2016).

    Article  Google Scholar 

  12. A. A. Melnikov, V. G. Kostishin, and V. V. Alenkov, J. Electron. Mater. 46, 2737 (2017).

    Article  ADS  Google Scholar 

  13. X. Lu, Energy Convers. Manage. 169, 186 (2018).

    Article  Google Scholar 

  14. H. S. Lee, Appl. Energy 106, 79 (2013).

    Article  Google Scholar 

  15. X. Ying, J. Therm. Sci. Eng. Appl. 10, 051008 (2018).

    Article  Google Scholar 

  16. R. Lamba and S. C. Kaushik, Energy Convers. Manage. 144, 288 (2017).

    Article  Google Scholar 

  17. Y. Cai, Energy Convers. Manage. 124, 203 (2016).

    Article  Google Scholar 

  18. J. Chen, Energy Convers. Manage. 122, 298 (2016).

    Article  Google Scholar 

  19. J. Ramousse, Int. J. Thermodyn. 19, 82 (2016).

    Article  Google Scholar 

  20. D. Liu, Y. Cai, and F. Y. Zhao, Energy 128, 403 (2017).

    Article  Google Scholar 

  21. A. Montecucco and A. R. Knox, Appl. Energy 118, 166 (2014).

    Article  Google Scholar 

  22. M. R. Pearson and C. E. Lents, J. Heat Transf. 138, 081301 (2016).

    Article  Google Scholar 

  23. D. Liu, Y. Cai, and F. Y. Zhao, Energy 128, 403 (2017).

    Article  Google Scholar 

  24. C. C. Wang, C. I. Hung, and W. H. Chen, Energy 39, 236 (2012).

    Article  Google Scholar 

  25. A. Montecucco, J. R. Buckle, and A. R. Knox, Appl. Therm. Eng. 35, 177 (2012).

    Article  Google Scholar 

  26. S. B. Riffat, X. Ma, and R. Wilson, Appl. Therm. Eng. 26, 494 (2006).

    Article  Google Scholar 

  27. A. A. Melnikov, A. M. Phiri, I. V. Tarasova, and N. V. Batrameev, Semiconductors 51, 858 (2017).

    Article  ADS  Google Scholar 

  28. A. F. Ioffe, Semicondutor Thermoelements and Thermoelectric Cooling (Akad. Nauk SSSR, Moscow, Leningrad, 1960; Infosearch, London, 1957).

  29. L. I. Anatychuk and V. A. Semenyuk, Optimal Control of the Properties of Thermoelectric Materials and Devices (Prut, Chernovitsy, 1992), p. 146 [in Russian].

    Google Scholar 

  30. A. A. Melnikov, V. S. Nagornaya, L. V. Solov’yanchik, and S. V. Kondrashov, Tech. Phys. 88, 1792 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Melnikov.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, A.A., Tarasov, O.M., Chekov, A.V. et al. Dimensionless Mathematical Model of a Thermoelectric Cooler: ΔTmax Mode. Semiconductors 53, 628–632 (2019). https://doi.org/10.1134/S1063782619050178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619050178

Navigation