Journal of Electronic Materials

, Volume 45, Issue 12, pp 6067–6078 | Cite as

Influence of Li Addition to Zn-Al Alloys on Cu Substrate During Spreading Test and After Aging Treatment

  • Tomasz Gancarz
  • Janusz Pstrus
  • Grzegorz Cempura
  • Katarzyna Berent
Open Access
Article

Abstract

The spreading of Zn-Al eutectic-based alloys with 0.05 wt.%, 0.1 wt.%, and 0.2 wt.% Li on Cu substrate has been studied using the sessile drop method in presence of QJ201 flux. Wetting tests were performed after 1 min, 3 min, 8 min, 15 min, 30 min, and 60 min of contact at temperatures of 475°C, 500°C, 525°C, and 550°C. Samples after spreading at 500°C for 1 min were subjected to aging for 1 day, 10 days, and 30 days at temperature of 120°C, 170°C, and 250°C. The spreadability of eutectic Zn-5.3Al alloy with different Li contents on Cu substrate was determined in accordance with ISO 9455-10:2013-03. Selected solidified solder–substrate couples were, after spreading and aging tests, cross-sectioned and subjected to scanning electron microscopy, energy-dispersive spectroscopy (EDS), and x-ray diffraction (XRD) analysis of the interfacial microstructure. An experiment was designed to demonstrate the effect of Li addition on the kinetics of the formation and growth of CuZn, Cu5Zn8, and CuZn4 intermetallic compound (IMC) phases, during spreading and aging. The IMC layers formed at the interface were identified using XRD and EDS analyses. Increasing addition of Li to Zn-Al alloy caused a reduction in the thickness of the IMC layer at the interface during spreading, and an increase during aging. The activation energy was calculated, being found to increase for the Cu5Zn8 phase but decrease for the CuZn and CuZn4 phases with increasing Li content in the Zn-Al-Li alloys. The highest value of 142 kJ mol−1 was obtained for Zn-Al with 1.0 Li during spreading and 69.2 kJ mol−1 for Zn-Al with 0.05 Li during aging. Aging at 250°C caused an increase in only the Cu5Zn8 layer, which has the lowest Gibbs energy in the Cu–Zn system. This result is connected to the high diffusion of Cu from the substrate to the solder.

Keywords

Zn-Al-Li spreading test lead-free solder IMCs aging microstructure 

References

  1. 1.
    B.C. Wei, C.Q. Chen, Z. Huang, and Y.G. Zhang, Mater. Sci. Eng. A 280, 161 (2000).CrossRefGoogle Scholar
  2. 2.
    Y. Deng, J. Yang, S. Li, J. Zhang, and X. Zhang, Trans. Nonferr. Met. Soc. 24, 1653 (2014).CrossRefGoogle Scholar
  3. 3.
    R. Li, F. Pan, B. Jiang, Q. Yang, and A. Tang, Mater. Des. 46, 922 (2013).CrossRefGoogle Scholar
  4. 4.
    R. Li, F. Pan, B. Jiang, H. Dong, and Q. Yang, Mater. Sci. Eng. A 562, 33 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Kim, J. Kim, H. Yu, J. Choi, and H. Son, J. Alloys Compd. 583, 15 (2014).CrossRefGoogle Scholar
  6. 6.
    H. Son, Y. Kim, D. Kim, J. Kim, and H. Yu, J. Alloys Compd. 564, 130 (2013).CrossRefGoogle Scholar
  7. 7.
    T. Gancarz and G. Cempura, Mater. Des. 104, 51 (2016). doi:10.1016/j.matdes.2016.05.Google Scholar
  8. 8.
    H. Qin, H. Zhang, and H. Wu, Mater. Sci. Eng. A 626, 322 (2015).CrossRefGoogle Scholar
  9. 9.
    W. Hu, Y. Liu, D. Li, X. Zeng, and C. Xu, Phys. B 427, 85 (2013).CrossRefGoogle Scholar
  10. 10.
    T. Gancarz, J. Pstruś, P. Fima, and S. Mosińska, J. Alloys Compd. 582, 313 (2014).CrossRefGoogle Scholar
  11. 11.
    T. Gancarz, J. Pstruś, S. Mosińska, and S. Pawlak, Metall. Mater. Trans. A 47, 368 (2016).CrossRefGoogle Scholar
  12. 12.
    T. Gancarz, J. Pstruś, and K. Berent, J. Mater. Eng. Perform. (2016). doi:10.1007/s11665-016-2075-7.Google Scholar
  13. 13.
    C. Guo, Y. Liang, C. Li, and Z. Du, Calphad 35, 54 (2011).CrossRefGoogle Scholar
  14. 14.
    S.G. Protasova, O.A. Kogtenkova, B.B. Straumal, P. Zięba, and B. Baretzky, J. Mater. Sci. 46, 4349 (2011).CrossRefGoogle Scholar
  15. 15.
    G. Zeng, S. McDonald, and K. Nogita, Microelectron. Reliab. 52, 1306 (2012).CrossRefGoogle Scholar
  16. 16.
    N. Kang, H. Na, S. Kim, and C. Kang, J. Alloys Compd. 467, 246 (2009).CrossRefGoogle Scholar
  17. 17.
    Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma, and K. Ishida, J. Electron. Mater. 37, 314 (2008).CrossRefGoogle Scholar
  18. 18.
    T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, J. Electron. Mater. 28, 1172 (1999).CrossRefGoogle Scholar
  19. 19.
    V. Raghavan, J. Phase Equilib. Diff. 28, 183 (2007).CrossRefGoogle Scholar
  20. 20.
    T. Gancarz, Fluid Phase Equilib. 427, 97 (2016). doi:10.1016/j.fluid.2016.06.045.Google Scholar
  21. 21.
    Y. Xiao, M. Li, L. Wang, S. Huang, X. Du, and Z. Liu, Mater. Des. 73, 42 (2015).CrossRefGoogle Scholar
  22. 22.
    K. Berent, J. Pstrus, and T. Gancarz, J. Mater. Eng. Perform. (2016). doi:10.1007/s11665-016-2074-8.Google Scholar
  23. 23.
    M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K.N. Tu, Scr. Metall. 51, 641 (2004).CrossRefGoogle Scholar
  24. 24.
    Y.H. Zhu and J.J. Islas, J. Mater. Process. Technol. 66, 244 (1997).CrossRefGoogle Scholar
  25. 25.
    H. Lee, S. Yoon, and B. Lee, J. Electron. Mater. 27, 1161 (1998).CrossRefGoogle Scholar
  26. 26.
    J.Y. Wang, C.F. Lin, and C.M. Chen, Scr. Mater. 64, 633 (2011).CrossRefGoogle Scholar
  27. 27.
    G. López, E. Mittemeijer, and B. Straumal, Acta Mater. 52, 4537 (2004).CrossRefGoogle Scholar
  28. 28.
    J. Lee, K. Kim, K. Suganuma, J. Takenaka, and K. Hagio, Mater. Trans. 46, 2413 (2005).CrossRefGoogle Scholar
  29. 29.
    Y. Zhu, W. Lee, and S. To, Mater. Charact. 52, 217 (2004).CrossRefGoogle Scholar
  30. 30.
    M. Islam and A. Sharif, Reference Module in Materials Science and Materials (2016). doi:10.1016/B978-0-12-803581-8.04012-1.Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Metallurgy and Materials SciencePolish Academy of SciencesKrakówPoland
  2. 2.International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer ScienceAGH University of Science and TechnologyKrakówPoland
  3. 3.Academic Centre for Materials and NanotechnologyAGH University of Science and TechnologyKrakówPoland

Personalised recommendations