Skip to main content
Log in

Investigation of Leakage Current Mechanisms in La2O3/SiO2/4H-SiC MOS Capacitors with Varied SiO2 Thickness

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the material and electrical properties of La2O3/SiO2/4H-SiC metal–oxide–semiconductor (MOS) capacitors are systematically characterized. Thermal oxidization SiO2 with varying thickness (0 nm, 3.36 nm, 5 nm, 8 nm, and 30 nm) were coated with La2O3 using atomic layer deposition on n-type 4H-SiC. The stacking oxides were measured using atomic force microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy, and the MOS capacitors were measured by capacitance–voltage and current–voltage measurements. The results demonstrate that the main gate current leakage mechanisms are dependent on the thickness of the SiO2 oxide under the applied electric field. The primary mechanism for current leakage from the La2O3/4H-SiC MOS capacitor follows the Schottky emission mechanism due to its low conduction band offset. In contrast, the current leakage mechanism for the capacitor with a 3.36 nm SiO2 layer follows the Poole–Frenkel emission mechanism on account of its high trap charge density in the gate dielectric and at the interface. When the thickness of the SiO2 layer increases to 8 nm, lower leakage current is observed by reason of the low trap charge density and high conduction band offset when E ≤ 5 MV/cm. As the electric field strength increases to 5 MV/cm and 5.88 MV/cm (30 nm SiO2: 4.8 MV/cm), the main current leakage mechanism changes to the Fowler–Nordheim tunneling mechanism, which indicates that the La2O3/SiO2 stacking structure can improve the properties of MOS capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Kikuchi and K. Kita, Appl. Phys. Lett. 105, 032106 (2014).

    Article  Google Scholar 

  2. A.F. Basile, A.C. Ahyi, L.C. Feldman, J.R. Williams, and P.M. Mooney, J. Appl. Phys. 115, 034502 (2014).

    Article  Google Scholar 

  3. P. Fiorenza, F. Giannazzo, A. Frazzetto, and F. Roccaforte, J. Appl. Phys. 112, 084501 (2012).

    Article  Google Scholar 

  4. Q.W. Song, Y.M. Zhang, Y.M. Zhang, Q. Zhang, and H.L. Lü, Chin. Phys. B 19, 087202 (2010).

    Article  Google Scholar 

  5. X. Shen, S. Dhar, and S.T. Pantelides, Appl. Phys. Lett. 106, 143504 (2015).

    Article  Google Scholar 

  6. A. Chanthaphan, T. Hosoi, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 104, 122105 (2014).

    Article  Google Scholar 

  7. X.Y. Yang, B.M. Lee, and V. Misra, IEEE Electron. Dev. Lett. 36, 312 (2015).

    Article  Google Scholar 

  8. X.Y. Tang, Q.W. Song, Y.M. Zhang, Y.M. Zhang, R.X. Jia, H.L. Lv, and Y.H. Wang, Chin. Phys. B 21, 087701 (2012).

    Article  Google Scholar 

  9. S.S. Suvanam, K. Gulbinas, M. Usman, M.K. Linnarson, D.M. Martin, J. Linnros, V. Grivickas, and A. Hallén, J. Appl. Phys. 117, 105309 (2015).

    Article  Google Scholar 

  10. A. Tselev, V.K. Sangwan, D. Jariwala, T.J. Marks, L.J. Lauhon, M.C. Hersam, and S.V. Kalinin, Appl. Phys. Lett. 103, 243105 (2013).

    Article  Google Scholar 

  11. C.M. Hsu and J.G. Hwu, Appl. Phys. Lett. 101, 253517 (2012).

    Article  Google Scholar 

  12. S. Alialy, Ş. Altındal, E.E. Tanrıkulu, and D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014).

    Article  Google Scholar 

  13. H.J. Quah, W.F. Lim, S.C. Wimbush, Z. Lockman, and K.Y. Cheong, Electrochem. Solid-State Lett. 13, 396 (2010).

    Article  Google Scholar 

  14. Y.C. Wang, R.X. Jia, C.Z. Li, and Y.M. Zhang, AIP Adv. 5, 087166 (2015).

    Article  Google Scholar 

  15. X.Y. Yang, B.M. Lee, and V. Misra, Mater. Sci. Forum 778, 557 (2014).

    Article  Google Scholar 

  16. J.H. Moon, K.Y. Cheong, D.I. Eom, H.K. Song, J.H. Yim, J.H. Lee, H.J. Na, W. Bahng, N.K. Kim, and H.J. Kim, Mater. Sci. Forum 556, 643 (2007).

    Article  Google Scholar 

  17. Y. Zhao, K. Kita, and A. Toriumi, Appl. Phys. Lett. 96, 242901 (2010).

    Article  Google Scholar 

  18. Y. Kim, S. Woo, H. Kim, J. Lee, H. Lee, and H. Jeon, J. Mater. Res. 25, 1898 (2010).

    Article  Google Scholar 

  19. H. Wong, H. Iwai, K. Kakushima, B.L. Yang, and P.K. Chu, J. Electrochem. Soc. 157, G49 (2010).

    Article  Google Scholar 

  20. Y. Yang, C.G. Jin, L.J. Zhuge, H.Y. Zhang, Z.F. Wu, and X.M. Wu, J. Phys. D 46, 505312 (2013).

    Article  Google Scholar 

  21. R. Mahapatra, A.K. Chakraborty, A.B. Horsfall, N.G. Wright, G. Beamson, and K.S. Coleman, Appl. Phys. Lett. 92, 042904 (2008).

    Article  Google Scholar 

  22. Y.C. Wang, Y.M. Zhang, and R.X. Jia, Mater. Sci. Forum 858, 689 (2016).

    Article  Google Scholar 

  23. K.Y. Cheong, J.H. Moon, T.J. Park, J.H. Kim, C.S. Hwang, and H.J. Kim, IEEE. Trans. Electron. Dev. 54, 3409 (2007).

    Article  Google Scholar 

  24. K.Y. Cheong, J.H. Moon, H.J. Kim, W. Bahng, and N.K. Kim, J. Appl. Phys. 103, 084113 (2008).

    Article  Google Scholar 

  25. I.Y.K. Chang and J.Y.M. Lee, Appl. Phys. Lett. 93, 223503 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge that this work is supported by the National Natural Science Foundation of China (Grant No. 51272202 and No. 51472196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renxu Jia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jia, R., Zhao, Y. et al. Investigation of Leakage Current Mechanisms in La2O3/SiO2/4H-SiC MOS Capacitors with Varied SiO2 Thickness. J. Electron. Mater. 45, 5600–5605 (2016). https://doi.org/10.1007/s11664-016-4760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4760-6

Keywords

Navigation