Skip to main content
Log in

Structural, Morphological and Optical Properties of Sn3Sb2S6 Thin Films Synthesized by Oblique Angle Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The oblique angle deposition technique has attracted a lot attention in many different applications due to its unique advantage of programmable nanocolumns. In this work we use this technique to investigate the physical properties of obliquely thermal evaporated Sn3Sb2S6 thin films deposited onto unheated glass and silicon substrates, inclined from the flux vapor source at the deposition angles 0°, 40°, 60°, 75° and 85°. X-ray diffraction (XRD) and UV–Visible and near infrared (UV–Vis-IFR) analysis were used respectively to characterize the structural and optical properties of the layers. The influence of flux angle on the surface morphology and the microstructure was investigated by using scanning electron microscopy. The optical constants were obtained from analysis of the experimental recorded transmission and reflectance spectral data over the wavelength range 300 nm to 1800 nm. The band gaps of the synthesized thin films were found to be direct allowed transitions and increased from 1.44 eV to 1.66 eV with increasing γ from 0° to 85°, respectively. The absorption coefficients of the films are in the range of 105 cm−1 to 106 cm−1. The refractive indexes were evaluated in the transparent region in terms of the envelope method suggested by the Swanepoel model. It has been found that the refractive index decreases from 2.66 to 2.06 with increasing deposition angle from 0° to 85°, respectively. The relationship between the flux incident angles γ and the column angle β was also explored. The oblique angle deposition films showed an inclined columnar structure, with columns tilting in the direction of the incident flux. The effective packing densities of the synthesized Sn3Sb2S6 thin films were calculated using Bruggeman effective medium approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.O. Young and J. Kowal, Nature 183, 104 (1959).

    Article  Google Scholar 

  2. A.V. Popta, J.C. Sit, and M.J. Brett, Appl. Opt. 43, 3632 (2004).

    Article  Google Scholar 

  3. L. Dong, R.W. Smith, and D.J. Srolovitz, J. Appl. Phys. 80, 5682 (1996).

    Article  Google Scholar 

  4. B. Dick, M.J. Brett, and T.J. Smy, Vac. Sci. Technol. B 21, 23 (2003).

    Article  Google Scholar 

  5. K. Robbie and M.J. Brett, J. Vac. Sci. Technol. A 13, 2991 (1995).

    Article  Google Scholar 

  6. A. Barranco, R. Borras, A.R. Gonzalez-Elipe, and A. Palmero, Prog. Mater Sci. 76, 59 (2016).

    Article  Google Scholar 

  7. S.-H. Woo and C.K. Hwangbo, J Korean Phys. Soc. 49, 2136 (2006).

    Google Scholar 

  8. D. Abdelkader, F. Chaffar Akkari, N. Khemiri, B. Gallas, F. Antoni, and M. Kanzari, J. Alloys Compd. 646, 1049 (2015).

    Article  Google Scholar 

  9. H. Dittrich, K. Herz, J. Eberhardt, and G. Schumm, in Proceedings of the 14th European PV Solar Energy Conference (H. Stephens & Ass, Barcelona, 1997) p. 2054

  10. A. Larbi, H. Dahman, and M. Kanzari, Vacuum 110, 34 (2014).

    Article  Google Scholar 

  11. A. Harizi, A. Sinaoui, F. Chaffar Akkari, and M. Kanzari, Mater. Sci. Semicond. Process. 41, 450 (2016).

    Article  Google Scholar 

  12. P. Rudolph and F.M. Kiessling, Cryst. Res. Technol. 23, 1207 (1988).

    Article  Google Scholar 

  13. P.P.K. Smith, Acta Crystallogr. Sec. C 40, 581 (1984).

    Article  Google Scholar 

  14. A. Sinaoui, I. Trabelsi, F. Chaffar Akkar, F. Aousgi, and M. Kanzari, Int. J. Thin Fil. Sci. Technol. 3, 19 (2014).

    Article  Google Scholar 

  15. B.D. Cullity, Elements of X-ray Diffraction (London: Addison-Wesley, 1978).

    Google Scholar 

  16. J.M. Nieuwenhuizen and H.B. Haanstra, Philips Tech Rev. 27, 87 (1966).

    Google Scholar 

  17. R.N. Tait, T. Smy, and J.M. Brett, J. Vac. Sci. Technol. A 10, 1518 (1992).

    Article  Google Scholar 

  18. K. Robbie and M.J. Brett, J. Vac. Sci. Technol. A 15, 1460 (1997).

    Article  Google Scholar 

  19. T.S. Moss, Optical Properties of Semiconductors (London: Butterworth’s Scientific Publication LTD, 1959).

    Google Scholar 

  20. V.V. Kindyak, A.S. Kindyak, V.F. Gremenok, I.V. Bodnar, V. Rud Yu, and G.A. Madvedkin, Thin Solid Films 250, 33 (1994).

    Article  Google Scholar 

  21. F.C. Akkari, M. Kanzari, and B. Rezig, Physica E 40, 2577 (2008).

    Article  Google Scholar 

  22. E.A. Davis and N.F. Mott, Phil. Mag. 22, 903 (1970).

    Article  Google Scholar 

  23. S. Ilican, M. Caglar, and Y. Caglar, J. Optoelectron. Adv. Mater. 9, 1414 (2007).

    Google Scholar 

  24. S. Ilican, Y. Caglar, and M. Caglar, J. Optoelectron. Adv. Mater. 10, 2578 (2008).

    Google Scholar 

  25. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983).

    Article  Google Scholar 

  26. S.Z. Rahchmani, H.R. Dijazi, and M.H. Ehsani, Appl. Surf. Sci. 356, 1096 (2015).

    Article  Google Scholar 

  27. C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, Thin Solid Films 534, 275 (2013).

    Article  Google Scholar 

  28. D. Stroud, Superlattices Microstruct. 23, 567 (1998).

    Article  Google Scholar 

  29. G. Beydaghyan, K. Kaminska, T. Brown, and K. Robbie, Appl. Opt. 43, 5343 (2004).

    Article  Google Scholar 

  30. S. Wang, G. Xia, H. He, K. Yi, J. Shao, and Z. Fan, J. Alloys Compd. 431, 287 (2007).

    Article  Google Scholar 

  31. T. Motohiro and Y. Taga, Appl. Opt. 28, 2466 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larbi, A., Chaffar Akkari, F., Dahman, H. et al. Structural, Morphological and Optical Properties of Sn3Sb2S6 Thin Films Synthesized by Oblique Angle Deposition. J. Electron. Mater. 45, 5487–5496 (2016). https://doi.org/10.1007/s11664-016-4714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4714-z

Keywords

Navigation