Skip to main content
Log in

Development of FeSiBNbCu Nanocrystalline Soft Magnetic Alloys with High B s and Good Manufacturability

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to develop Fe-based nanocrystalline soft magnetic alloys with high saturation magnetic flux density (B s) and good manufacturability, the effect of the Nb content on the thermal stability, microstructural evolution and soft magnetic properties of Fe78−x Si13B8Nb x Cu1 (x = 0, 1, 2 and 3) alloys were investigated. It is found that proper Nb addition is effective in widening the optimum annealing temperature range and refining the α-Fe grain in addition to enhancing the soft magnetic properties. For the representative Fe76 Si13B8Nb2Cu1 alloy, the effective annealing time can be over 60 min in the optimal temperature range of 500–600°C. FeSiBNbCu nanocrystalline soft magnetic alloys with desirable soft magnetic properties including high B s of 1.39 T, low coercivity (H c) of 1.5 A/m and high effective permeability (μ e) of 21,500 at 1 kHz have been developed. The enhanced soft magnetic performance and manufacturability of the FeSiBNbCu nanocrystalline alloys are attributed to the high activated energy for the precipitation of α-Fe(Si) and the second phase. These alloys with excellent performance have promising applications in electromagnetic fields like inductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma, K. Sickafus, J.O. Cross, and V.G. Harris, J. Appl. Phys. 84, 6773 (1998).

    Article  Google Scholar 

  2. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).

    Article  Google Scholar 

  3. M.E. McHenry and D.E. Laughlin, Acta Mater. 48, 223 (2000).

    Article  Google Scholar 

  4. G. Herzer, IEEE Trans. Magn. 25, 3327 (1989).

    Article  Google Scholar 

  5. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990).

    Article  Google Scholar 

  6. K. Suzuki, N. Kataoka, A. Inoue, A. Makino, and T. Masumoto, Mater. Trans. JIM 31, 743 (1990).

    Article  Google Scholar 

  7. K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Appl. Phys. 70, 6232 (1991).

    Article  Google Scholar 

  8. Z.Z. Li, A.D. Wang, C.T. Chang, Y.G. Wang, B.L. Dong, and S.X. Zhou, J. Alloys Compd. 611, 197–201 (2014).

    Article  Google Scholar 

  9. A. Makino, IEEE Trans. Magn. 1331, 48 (2012).

    Google Scholar 

  10. G. Herzer, Handbook of Magnetic Materials, ed. K.H.J. Buschow (Weinheim: Elsevier, 1997), pp. 415–462.

    Google Scholar 

  11. M.A. Willard and M. Daniil, Handbook of Magnetic Materials, ed. K.H.J. Buschow (Weinheim: Elsevier, 2013), pp. 173–342.

    Google Scholar 

  12. J. Hu, M. Jiang, H. Qin, B. Li, and H. Kronmüller, Mater. Sci. Eng. A 449–451, 371 (2007).

    Article  Google Scholar 

  13. M. Kopcewicz, A. Grabias, and P. Nowicki, Mater. Sci. Eng. A 226–228, 515 (1997).

    Article  Google Scholar 

  14. N. Mattern, A. Danzig, and M. Müller, Mater. Sci. Eng. A 77–85, 194 (1994).

    Google Scholar 

  15. K. Suzuki and G. Herzer, Scripta Mater. 67, 548 (2012).

    Article  Google Scholar 

  16. T. Bitoh, A. Makino, and A. Inoue, J. Magn. Magn. Mater. 272–276, 1445 (2004).

    Article  Google Scholar 

  17. A.D. Wang, H. Men, B.L. Shen, G.Q. Xie, A. Makino, and A. Inoue, Thin Solid Films 519, 8283 (2011).

    Article  Google Scholar 

  18. M. Ohta and Y. Yoshizawa, Mater. Trans. 48, 2378 (2007).

    Article  Google Scholar 

  19. R. Alben, J.J. Becker, and M.C. Chi, J. Appl. Phys. 49, 1653 (1978).

    Article  Google Scholar 

  20. M. Ohta and Y. Yoshizawa, J. Magn. Magn. Mater. 2220, 321 (2009).

    Google Scholar 

  21. Y. Yoshizawa and M. Ohta, J. Appl. Phys. 103, 07E722 (2008).

    Google Scholar 

  22. Z.Z. Li, A.D. Wang, C.T. Chang, Y.G. Wang, B.L. Dong, and S.X. Zhou, Intermetallics 225, 54 (2014).

    Google Scholar 

  23. T. Ozawa and K. Kanari, Thermochim. Acta 234, 41 (1994).

    Article  Google Scholar 

  24. H.R. Lashgari, Z. Chen, X.Z. Liao, D. Chu, M. Ferry, and S. Li, Mater. Sci. Eng. A 626, 480 (2015).

    Article  Google Scholar 

  25. A. Makino, H.M.T. Kubota, K. Yubuta, and A. Inoue, J. Appl. Phys. 105, 07308 (2009).

    Google Scholar 

  26. A. Makino, H.M.T. Kubota, K. Yubuta, and A. Inoue, IEEE Trans. Magn. 45, 4302 (2009).

    Article  Google Scholar 

  27. K. Hono, K. Hiraga, Q. Wang, A. Inoue, and T. Sakurai, Acta Metall. Mater. 40, 2137 (1992).

    Article  Google Scholar 

  28. T. Graf, G. Hampel, J. Korus, J. Hesse, and G. Herzer, Nanostruct. Mater. 6, 469 (1995).

    Article  Google Scholar 

  29. K. Suzuki, J.M. Cadogan, V. Sahajwalla, A. Inoue, and T. Masumoto, Mater. Sci. Eng. A 226–228, 554 (1997).

    Article  Google Scholar 

  30. H.S. Liu, C.H. Yin, X.X. Miao, Z.D. Han, D.H. Wang, and Y.W. Du, Mater. Sci. Technol. 24, 45 (2008).

    Article  Google Scholar 

  31. J. Torrens-Serra, S. Roth, J. Rodriguez-Viejo, and M.T. Clavaguera-Mora, J. Non-Cryst. Solids 354, 5110 (2008).

    Article  Google Scholar 

  32. Z. Xiang, A. Wang, C. Zhao, H. Men, X. Wang, C. Chang, and D. Pan, J. Alloys Compd. 622, 1000 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51541106, U1510112 and 51577123), National Scientific and Technological Support Projects (No. 2013BAE0 8B01) and the Qualified Personnel Foundation of Taiyuan University of Technology (QPFT) (No: tyutrc-201370a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Zhang, Anding Wang or Chuntao Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, F., He, A., Zhang, J. et al. Development of FeSiBNbCu Nanocrystalline Soft Magnetic Alloys with High B s and Good Manufacturability. J. Electron. Mater. 45, 4913–4918 (2016). https://doi.org/10.1007/s11664-016-4643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4643-x

Keywords

Navigation