Skip to main content
Log in

Industrialization of a FeSiBNbCu nanocrystalline alloy with high Bs of 1.39 T and outstanding soft magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High Fe content Fe76Si13B8Nb2Cu1 alloy ribbons with excellent quality and width of 20–55 mm were successfully produced with industrial processes and raw materials, showing the superb manufacturability and impurity tolerance. It is found that impurities and ribbon width have a negligible influence on crystallization behavior, by comparing with samples prepared with high purity materials. The wide annealing time window can be over 50 min in the optimal temperature range of 500–600 °C. Besides, industrialized Fe76Si13B8Nb2Cu1 alloy ribbons exhibit outstanding magnetic properties, including high saturation magnetic flux density (Bs) of 1.39T, high effect permeability of 28.8 × 103 at 1 kHz and low coercivity of 3.5 A/m, which are equivalent to ribbon prepared with pure materials. Extreme low core losses of 0.91 W/kg at 1T and 1 kHz, 5.30 W/kg at 0.5T and 10 kHz were also obtained in ring samples. It is found that fine nanostructure and wide stripe domains are the origins of excellent magnetic properties. This alloy with excellent performance has great potential in applications of high working B and frequency devices and will also be a new reference for industrialization of nanocrystalline alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Herzer, Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61, 718–734 (2013)

    Article  CAS  Google Scholar 

  2. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. J. Appl. Phys. 64, 6044–6046 (1988)

    Article  CAS  Google Scholar 

  3. J.M. Silveyra, V.J. Cremaschi, G. Vlasák, E. Illeková et al., Magnetostrictive behaviour of Fe73.5Si13.5B9Nb3–xMoxCu1 alloys. J. Magn. Magn. Mater. 322, 2350–2354 (2010)

    Article  CAS  Google Scholar 

  4. Y. Han, R. Wei, A. Wang, C. Chang et al., Improvement of magnetic properties for V-substituted Fe73.5Si13.5B9Cu1Nb3–xVx nanocrystalline alloys. J. Mater. Sci. Mater. Electron. 28, 10555–10563 (2017)

    Article  CAS  Google Scholar 

  5. K. Suzuki, N. Kataoka, A. Inoue, A. Makino et al., High saturation magnetization and soft magnetic properties of bcc Fe–Zr–B alloys with ultrafine grain structure. Mater. Trans. JIM 31, 743–746 (1990)

    Article  CAS  Google Scholar 

  6. A. Makino, A. Inoue, T. Masumoto, Nanocrystalline soft magnetic Fe-M-B (M = Zr, Hf, Nb), Fe-M-O (M = Zr, Hf, RARE EARTH) alloys and their applications. Nanostruct. Mater. 12, 825–828 (1999)

    Article  Google Scholar 

  7. K. Suzuki, A. Makino, N. Kataoka, High saturation magnetization and soft magnetic properties of bcc Fe–Zr–B and Fe–Zr–B–M (M = Transition Metal) alloys with nanoscale grain size. Mater. Trans. JIM 32, 93–102 (1991)

    Article  CAS  Google Scholar 

  8. M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma et al., Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B=Cu1 nanocrystalline alloys. J. Appl. Phys. 84, 6773–6777 (1998)

    Article  CAS  Google Scholar 

  9. X. Liang, T. Kulik, J. Ferenc, B. Xu, Thermal and magnetic properties of Hf-containing HITPERM alloys. J. Magn. Magn. Mater. 308, 227–232 (2007)

    Article  CAS  Google Scholar 

  10. M.A. Willard, M.Q. Huang, D.E. Laughlin, M.E. McHenry et al., Magnetic properties of HITPERM (Fe,Co)88Zr7B4Cu1 magnets. J. Appl. Phys. 85, 4421–4423 (1999)

    Article  CAS  Google Scholar 

  11. M. Matsuura, Z. Yan, M. Nishijima, A. Makino, Role of P in nanocrystallization of Fe85Si2B8P4Cu1. IEEE Trans. Magn. 50, 1–4 (2014)

    Article  Google Scholar 

  12. A. Makino, Nanocrystalline soft magnetic Fe–Si–B–P–Cu alloys with high B of 1.8–1.9 T contributable to energy saving. IEEE Trans. Magn. 48, 1331–1335 (2012)

    Article  CAS  Google Scholar 

  13. T. Takahashi, K. Yoshida, Y. Shimizu, A.D. Setyawan et al., Fe–Si–B–P–C–Cu nanocrystalline soft magnetic powders with high Bs and low core loss. Aip Adv. 7, 056111 (2017)

    Article  Google Scholar 

  14. M.E. McHenry, D.E. Laughlin, Nano-scale materials development for future magnetic applications. Acta Mater. 48, 223–238 (2000)

    Article  CAS  Google Scholar 

  15. G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)

    Article  CAS  Google Scholar 

  16. F. Wan, A. He, J. Zhang, A. Wang et al., Development of FeSiBNbCu nanocrystalline soft magnetic alloys with high Bs and good manufacturability. J. Electron. Mater. 45, 4913–4918 (2016)

    Article  CAS  Google Scholar 

  17. A. He, A. Wang, C. Chang, X. Wang, Dynamic magnetic characteristics and relaxation of Fe73.5Cu1Nb3Si15.5B7 nanocrystalline alloy under operating temperature and magnetizing frequency. J. Magn. Magn. Mater. 443, 261–266 (2017)

    Article  CAS  Google Scholar 

  18. M.E. Mchenry, M.A. Willard, D.E. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater Sci. 44, 291–433 (1999)

    Article  CAS  Google Scholar 

  19. H.Y. Jung, S. Yi, Enhanced glass forming ability and soft magnetic properties through an optimum Nb addition to a Fe–C–Si–B–P bulk metallic glass, Intermetallics. 18, 1936–1940 (2010)

    Article  CAS  Google Scholar 

  20. Z. Gan, Preparation of bulk amorphous Fe–Ni–P–B–Ga alloys from industrial raw materials. Scr. Mater. 48, 1543–1547 (2003)

    Article  CAS  Google Scholar 

  21. H.X. Li, J.E. Gao, S.L. Wang, S. Yi et al., Formation, crystallization behavior, and soft magnetic properties of FeCSiBP bulk metallic glass Fabricated using industrial raw materials. Metall. Mater. Trans. A 43, 2615–2619 (2011)

    Article  Google Scholar 

  22. L. Xie, T. Liu, A. He, Q. Li et al., High Bs Fe-based nanocrystalline alloy with high impurity tolerance. J. Mater. Sci. 53, 1437–1446 (2017)

    Article  Google Scholar 

  23. J. Pang, A. Wang, S. Yue, F. Kong et al., Fluxing purification and its effect on magnetic properties of high-Bs FeBPSiC amorphous alloy. J. Magn. Magn. Mater. 433, 35–41 (2017)

    Article  CAS  Google Scholar 

  24. P. Chen, T. Liu, F. Kong, A. Wang et al., Ferromagnetic element microalloying and clustering effects in high Bs Fe-based amorphous alloys. J. Mater. Sci. Technol. 34, 793–798 (2017)

    Article  Google Scholar 

  25. X. Liang, A. He, A. Wang, J. Pang, C. Wang et al., Fe content dependence of magnetic properties and bending ductility of FeSiBPC amorphous alloy ribbons. J. Alloy. Compd. 694, 1260–1264 (2017)

    Article  CAS  Google Scholar 

  26. K. Hono, D.H. Ping, M. Ohnuma, H. Onodera, Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5 B9Nb3Cu1 amorphous alloy. Acta Mater. 47, 997–1006 (1999)

    Article  CAS  Google Scholar 

  27. S. Dobák, J. Füzer, P. Kollár, Effect of a DC transverse magnetic field on the magnetization dynamics in FeCuNbSiB ribbons and derived nanostructured powder cores. J. Alloy. Compd. 651, 237–244 (2015)

    Article  Google Scholar 

  28. J. Füzerová, J. Füzer, P. Kollár, R. Bureš et al., Complex permeability and core loss of soft magnetic Fe-based nanocrystalline powder cores. J. Magn. Magn. Mater. 345, 77–81 (2013)

    Article  Google Scholar 

  29. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    Article  CAS  Google Scholar 

  30. E. Lopatina, I. Soldatov, V. Budinsky, M. Marsilius et al., Surface crystallization and magnetic properties of Fe84.3Cu0.7Si4B8P3 soft magnetic ribbons. Acta Mater. 96, 10–17 (2015)

    Article  CAS  Google Scholar 

  31. J. Zhang, F. Wan, Y. Li, A. Wang et al., Effect of surface crystallization on magnetic properties of Fe 82 Cu 1 Si 4 B 11.5 Nb 1.5 nanocrystalline alloy ribbons. J. Magn. Magn. Mater. 438, 126–131 (2017)

    Article  CAS  Google Scholar 

  32. F. Wan, T. Liu, F. Kong, A. Wang et al., Surface crystallization and magnetic properties of FeCuSiBNbMo melt-spun nanocrystalline alloys. Mater. Res. Bull. 96, 275–280 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFB0903902), and the National Natural Science Foundation of China (Grant Nos. 51601206, 51771083, 51771159), the Zhejiang Provincial Natural Science Foundation (LQ18E010006). This work was also supported by General Research Fund of Hong Kong under the grant number of CityU 102013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anding Wang, Aina He or Xincai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Wang, A., Zhao, C. et al. Industrialization of a FeSiBNbCu nanocrystalline alloy with high Bs of 1.39 T and outstanding soft magnetic properties. J Mater Sci: Mater Electron 29, 19517–19523 (2018). https://doi.org/10.1007/s10854-018-0082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0082-1

Navigation