Skip to main content
Log in

Microstructure and Microwave Dielectric Properties of (1−x)MgAl2O4x(Ca0.8Sr0.2)TiO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microwave dielectric properties of the (1−x)MgAl2O4x(Ca0.8Sr0.2)TiO3 (x = 0.02 to 0.10) ceramic system synthesized by the traditional solid-state reaction method have been investigated. Spinel-structured MgAl2O4 was present together with perovskite-structured (Ca0.8Sr0.2)TiO3, and this multiphase system was verified by x-ray diffraction (XRD) and energy spectrum analyses throughout the whole compositional range. With increasing x, the temperature coefficient of resonant frequency (τ f) and permittivity (ε r) gradually increased. Consequently, near-zero τ f could be obtained for samples with x = 0.08. Excellent microwave dielectric properties with relative permittivity (ε r) of 10.92, quality factor (Q × f) of 52,563 GHz (at 12.9 GHz), and temperature coefficient of resonant frequency (τ f) of −5.6 ppm/°C were obtained for 0.92MgAl2O4−0.08(Ca0.8Sr0.2)TiO3 composite sintered at 1440°C for 3 h, making this material a promising candidate for use in global communication satellites and radar detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Guo, H. Ohsato, and K. Kakimoto, J. Eur. Ceram. Soc. 26, 1827 (2006).

    Article  Google Scholar 

  2. H. Ohsato, Ceram. Int. 38, S141 (2012).

    Article  Google Scholar 

  3. S.P. Wu, C. Jiang, Y.X. Mei, and W.P. Tu, J. Am. Ceram. Soc. 95, 37 (2012).

    Article  Google Scholar 

  4. T. Joseph and M.T. Sebastian, J. Am. Ceram. Soc. 93, 147 (2010).

    Article  Google Scholar 

  5. J.A. Montoya, P. Angel, and T. Viveros, J. Mater. Chem. 11, 944 (2001).

    Article  Google Scholar 

  6. K.P. Surendran, P.V. Bijumon, P. Mohanan, and M.T. Sebastian, Appl. Phys. A 81, 823 (2005).

    Article  Google Scholar 

  7. W. Lei, W.Z. Lu, and X.C. Wang, Ceram. Int. 38, 99 (2012).

    Article  Google Scholar 

  8. G. Dou, D.X. Zhou, M. Guo, S.P. Gong, and Y.X. Hu, J. Mater. Sci. 24, 1431 (2013).

    Google Scholar 

  9. M.Z. Dong, Z.X. Yue, H. Zhuang, S.P. Meng, and L.T. Li, J. Am. Ceram. Soc. 91, 3981 (2008).

    Article  Google Scholar 

  10. C.L. Huang, J.Y. Chen, and C.Y. Jiang, J. Alloys Compd. 487, 420 (2009).

    Article  Google Scholar 

  11. P.L. Wise, I.M. Reaney, W.E. Lee, D.M. Iddles, and D.S. Cannell, J. Eur. Ceram. Soc. 21, 1723 (2001).

    Article  Google Scholar 

  12. B.W. Hakki and P.D. Coleman, IRE Trans. Microw. Theory Tech. 8, 402 (1960).

    Article  Google Scholar 

  13. W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476 (1970).

    Article  Google Scholar 

  14. N. Ichinose and T. Shimada, J. Eur. Ceram. Soc. 26, 1775 (2006).

    Article  Google Scholar 

  15. H. Tamura, J. Eur. Ceram. Soc. 26, 1775 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Program for Changjiang Scholars␣and Innovative Research Team in University (PCSIRT), IRT1146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunying Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Yu, J., Shen, C. et al. Microstructure and Microwave Dielectric Properties of (1−x)MgAl2O4x(Ca0.8Sr0.2)TiO3 Ceramics. J. Electron. Mater. 45, 4903–4907 (2016). https://doi.org/10.1007/s11664-016-4533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4533-2

Keywords

Navigation