Abstract
Ultrasonically bonded heavy Al wires subjected to a small junction temperature fluctuation under power cycling from 40°C to 70°C were investigated using a non-destructive three-dimensional (3-D) x-ray tomography evaluation approach. The occurrence of irreversible deformation of the microstructure and wear-out under such conditions were demonstrated. The observed microstructures consist of interfacial and inter-granular cracks concentrated in zones of stress intensity, i.e., near heels and emanating from interface precracks. Interfacial voids were also observed within the bond interior. Degradation rates of ‘first’ and ‘stitch’ bonds are compared and contrasted. A correlative microscopy study combining perspectives from optical microscopy with the x-ray tomography results clarifies the damage observed. An estimation of lifetime is made from the results and discussed in the light of existing predictions.
References
M. Musallam, C.M. Johnson, C.Y. Yin, H. Lu, and C. Bailey, in 13th International Power Electronics and Motion Control Conference (2008), pp. 76–83
B. Ji, V. Pickert, W. Cao, and B. Zahawi, IEEE Trans. Power Electron. 28, 5568 (2013).
Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, and I. Ohnuma, Microelectron. Reliab. 47, 2147 (2007).
R. Bayerer, Microelectron. Reliab. 50, 1715 (2010).
R. Amro and J. Lutz, in Proc. 2004 35th Annual IEEE Power Electronics Specialists Conference (2004), pp. 2593–2598
J. Onuki, M. Koizumi, and M. Suwa, IEEE Trans. Adv. Pack. 23, 108–112 (2000).
J. Wu, L. Zhou, P. Sun, and X. Du, in Proc. Electronics and Application Conference and Exposition (PEAC), 2014 International (2014), pp. 41–48.
K. Sasaki and N. Iwasa, in Proc. 20th Int. Symp. Power Semicond. Devices ICs (2008), pp. 181–184
G. Khatibi, M. Lederer, B. Weiss, T. Licht, J. Bernardi, and H. Danninger, Proc. Eng. 2, 511 (2010).
M. Held, P. Jacob, G. Nicoletti, P. Scacco, and M.H. Poech, Int. J. Electron. 86, 1193 (1999).
U. Scheuermann and R. Schmidt, Microelectron. Reliab. 53, 1687 (2013).
P. Cova and F. Fantini, Microelectron. Reliab. 38, 1347 (1998).
P.A. Agyakwa, V.M.F. Marques, M.R. Corfield, J.F. Li, L. Yang, and C.M. Johnson, J. Electron. Mater. 42, 537 (2013).
L. Zhou, S. Zhou, and M. Xu, Microelectron. Reliab. 53, 282 (2013).
K.B. Pedersen, P.K. Kristensen, V. Popok, and K. Pedersen, IEEE Trans. Power Electron. 30, 2405 (2015).
P.J. Withers and M. Preuss, Annu. Rev. Mater. Res. 4, 81 (2012).
M. Ciappa, Microelectron. Reliab. 42, 653 (2002).
I. Lum, M. Mayer, and J. Zhou, J. Electron. Mater. 35, 433 (2006).
S. Ramminger, S.P. Turkes, and G. Wachutka, Microelectron. Reliab. 38, 1301 (1998).
J.E. Krzanowski, IEEE Trans. Compon. Hybrid 13, 176 (1990).
I. Lum, M. Mayer, and Y. Zhou, J. Electron. Mater. 35, 433 (2006).
K.C. Joshi, Weld. J. 50, 840 (1971).
R. Pohlman and E. Lehfeldt, Ultrasonics 4, 178 (1966).
N. Murdeshwar and J.E. Krzanowski, Metall. Mater. Trans. A 28, 2663 (1997).
M.S. Broll, U. Geißler, J. Höfer, S. Schmitz, O. Wittler, and K.D. Lang, Microelectron. Reliab. (2015). doi:10.1016/j.microrel.2015.03.002.
K.B. Pedersen, D. Bening, P.K. Kristensen, V. Popok, and K. Pedersen, J. Mater. Sci. 25, 2863 (2014).
Y. Murakami and K.J. Miller, Int. J. Fatigue 27, 991 (2005).
P.J. Withers, Nat. Mater. 12, 7 (2013).
J.Y. Buffiere, E. Maire, J. Adrien, J.P. Masse, and E. Boller, Exp. Mech. 50, 289 (2010).
T. Matsunaga and Y. Uegai, in Proc. Electronics System Integration Technology Conference (2006), pp. 726–732.
L. Merkle, M. Sonner, and M. Petzold, Microelectron. Reliab. 54, 417 (2014).
U. Geißler, M. Schneider-Ramelow, and H. Reichl, IEEE Trans. Compon. Pack. Technol 32, 794 (2009).
R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci.Eng. A238, 219 (1997)
J.E. Krzanowski, IEEE Trans. Compon. Hybrid 13, 176 (1990).
Z.F. Zhang and Z.G. Wang, Prog. Mater. Sci. 53, 1025 (2008).
S. Kobayashi, T. Inomata, H. Kobayashi, S. Tsurekawa, and T. Watanabe, J. Mater. Sci. 43, 3792 (2008).
H. Lu, W.-S. Loh, C. Bailey, and C.M. Johnson, in 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference (2008), pp. 22–24. doi:10.1109/ IMPACT.2008.4783883
T.Y. Hung, L.L. Liao, C.C. Wang, W.H. Chi, and K.N. Chiang, IEEE TDMR 14, 484 (2014).
H. Medjahed, P.-E. Vivad, and B. Nogarede, in Proc. 6th International Conference on Integrated Power Systems (CIPS) (2012)
B. Czerny, M. Lederer, B. Nag, A. Trnka, G. Khatibi, and M. Thoben, Microelectron. Reliab. 52, 2353 (2012).
T.Y. Hung, S.Y. Chiang, C.J. Huang, C.C. Lee, and K.N. Chiang, Microelectron. Reliab. 51, 1819 (2011).
P.A. Agyakwa, L. Yang, M.R. Corfield, and C.M. Johnson, in Proc. 8 th International Conference on Integrated Power Systems (CIPS) (2014)
G. Khatibi, B. Weiss, J. Bernadi, and S. Schwarz, J. Electron. Mater. 41, 3436 (2012).
W.-S. Loh, S.C. Hogg, R.J. Ikujeniya, M.R. Corfield, P. Agyakwa, and C.M. Johnson, in Proc. International Conference on High Temperature Electronics (HiTEC) (Albuquerque, 2008)
C. Mi, D.A. Buttry, P. Sharma, and D.A. Kouris, J. Mech. Phys. Solids 59, 1858 (2011).
P. Shanthraj and M.A. Zikry, Int. J. Plast. 34, 154 (2012).
R.R. Keller, R.H. Geiss, N. Barbosa, A.J. Slifka, and D.T. Read, Metall. Mater. Trans. A 38, 2263 (2007).
Z.J. Zhang, P. Zhang, L.L. Li, and Z.F. Zhang, Acta Mater. 60, 3113 (2012).
P. Lukas and L. Kunz, Philos. Mag. 84, 317 (2004).
G. Khatibi, W. Wroczewski, B. Weiss, and T. Licht, Microelectron. Reliab. 48, 1822 (2008).
S. Ramminger, Siemens AG, Munich, Germany, personal communication, 2008
Acknowledgements
The authors gratefully acknowledge the support of the Innovative Electronics Manufacturing Research Centre (IeMRC) funded by the UK Engineering and Physical Sciences Research Council (EPSRC) through research Grant EP/H03014X/1. The authors also wish to thank Dynex Semiconductor Ltd. for providing the wire bond samples.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Agyakwa, P.A., Yang, L., Arjmand, E. et al. Damage Evolution in Al Wire Bonds Subjected to a Junction Temperature Fluctuation of 30 K. J. Electron. Mater. 45, 3659–3672 (2016). https://doi.org/10.1007/s11664-016-4519-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-016-4519-0
Keywords
- Aluminum
- wire bonds
- power cycling
- reliability
- x-ray tomography
- high cycle thermal fatigue