Skip to main content

Damage Evolution in Al Wire Bonds Subjected to a Junction Temperature Fluctuation of 30 K

Abstract

Ultrasonically bonded heavy Al wires subjected to a small junction temperature fluctuation under power cycling from 40°C to 70°C were investigated using a non-destructive three-dimensional (3-D) x-ray tomography evaluation approach. The occurrence of irreversible deformation of the microstructure and wear-out under such conditions were demonstrated. The observed microstructures consist of interfacial and inter-granular cracks concentrated in zones of stress intensity, i.e., near heels and emanating from interface precracks. Interfacial voids were also observed within the bond interior. Degradation rates of ‘first’ and ‘stitch’ bonds are compared and contrasted. A correlative microscopy study combining perspectives from optical microscopy with the x-ray tomography results clarifies the damage observed. An estimation of lifetime is made from the results and discussed in the light of existing predictions.

References

  1. 1.

    M. Musallam, C.M. Johnson, C.Y. Yin, H. Lu, and C. Bailey, in 13th International Power Electronics and Motion Control Conference (2008), pp. 76–83

  2. 2.

    B. Ji, V. Pickert, W. Cao, and B. Zahawi, IEEE Trans. Power Electron. 28, 5568 (2013).

    Article  Google Scholar 

  3. 3.

    Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, and I. Ohnuma, Microelectron. Reliab. 47, 2147 (2007).

    Article  Google Scholar 

  4. 4.

    R. Bayerer, Microelectron. Reliab. 50, 1715 (2010).

    Article  Google Scholar 

  5. 5.

    R. Amro and J. Lutz, in Proc. 2004 35th Annual IEEE Power Electronics Specialists Conference (2004), pp. 2593–2598

  6. 6.

    J. Onuki, M. Koizumi, and M. Suwa, IEEE Trans. Adv. Pack. 23, 108–112 (2000).

    Article  Google Scholar 

  7. 7.

    J. Wu, L. Zhou, P. Sun, and X. Du, in Proc. Electronics and Application Conference and Exposition (PEAC), 2014 International (2014), pp. 41–48.

  8. 8.

    K. Sasaki and N. Iwasa, in Proc. 20th Int. Symp. Power Semicond. Devices ICs (2008), pp. 181–184

  9. 9.

    G. Khatibi, M. Lederer, B. Weiss, T. Licht, J. Bernardi, and H. Danninger, Proc. Eng. 2, 511 (2010).

    Article  Google Scholar 

  10. 10.

    M. Held, P. Jacob, G. Nicoletti, P. Scacco, and M.H. Poech, Int. J. Electron. 86, 1193 (1999).

    Article  Google Scholar 

  11. 11.

    U. Scheuermann and R. Schmidt, Microelectron. Reliab. 53, 1687 (2013).

    Article  Google Scholar 

  12. 12.

    P. Cova and F. Fantini, Microelectron. Reliab. 38, 1347 (1998).

    Article  Google Scholar 

  13. 13.

    P.A. Agyakwa, V.M.F. Marques, M.R. Corfield, J.F. Li, L. Yang, and C.M. Johnson, J. Electron. Mater. 42, 537 (2013).

    Article  Google Scholar 

  14. 14.

    L. Zhou, S. Zhou, and M. Xu, Microelectron. Reliab. 53, 282 (2013).

    Article  Google Scholar 

  15. 15.

    K.B. Pedersen, P.K. Kristensen, V. Popok, and K. Pedersen, IEEE Trans. Power Electron. 30, 2405 (2015).

    Article  Google Scholar 

  16. 16.

    P.J. Withers and M. Preuss, Annu. Rev. Mater. Res. 4, 81 (2012).

    Article  Google Scholar 

  17. 17.

    M. Ciappa, Microelectron. Reliab. 42, 653 (2002).

    Article  Google Scholar 

  18. 18.

    I. Lum, M. Mayer, and J. Zhou, J. Electron. Mater. 35, 433 (2006).

    Article  Google Scholar 

  19. 19.

    S. Ramminger, S.P. Turkes, and G. Wachutka, Microelectron. Reliab. 38, 1301 (1998).

    Article  Google Scholar 

  20. 20.

    J.E. Krzanowski, IEEE Trans. Compon. Hybrid 13, 176 (1990).

    Article  Google Scholar 

  21. 21.

    I. Lum, M. Mayer, and Y. Zhou, J. Electron. Mater. 35, 433 (2006).

    Article  Google Scholar 

  22. 22.

    K.C. Joshi, Weld. J. 50, 840 (1971).

    Google Scholar 

  23. 23.

    R. Pohlman and E. Lehfeldt, Ultrasonics 4, 178 (1966).

    Article  Google Scholar 

  24. 24.

    N. Murdeshwar and J.E. Krzanowski, Metall. Mater. Trans. A 28, 2663 (1997).

    Article  Google Scholar 

  25. 25.

    M.S. Broll, U. Geißler, J. Höfer, S. Schmitz, O. Wittler, and K.D. Lang, Microelectron. Reliab. (2015). doi:10.1016/j.microrel.2015.03.002.

    Google Scholar 

  26. 26.

    K.B. Pedersen, D. Bening, P.K. Kristensen, V. Popok, and K. Pedersen, J. Mater. Sci. 25, 2863 (2014).

    Google Scholar 

  27. 27.

    Y. Murakami and K.J. Miller, Int. J. Fatigue 27, 991 (2005).

    Article  Google Scholar 

  28. 28.

    P.J. Withers, Nat. Mater. 12, 7 (2013).

    Article  Google Scholar 

  29. 29.

    J.Y. Buffiere, E. Maire, J. Adrien, J.P. Masse, and E. Boller, Exp. Mech. 50, 289 (2010).

    Article  Google Scholar 

  30. 30.

    T. Matsunaga and Y. Uegai, in Proc. Electronics System Integration Technology Conference (2006), pp. 726–732.

  31. 31.

    L. Merkle, M. Sonner, and M. Petzold, Microelectron. Reliab. 54, 417 (2014).

    Article  Google Scholar 

  32. 32.

    U. Geißler, M. Schneider-Ramelow, and H. Reichl, IEEE Trans. Compon. Pack. Technol 32, 794 (2009).

    Article  Google Scholar 

  33. 33.

    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci.Eng. A238, 219 (1997)

  34. 34.

    J.E. Krzanowski, IEEE Trans. Compon. Hybrid 13, 176 (1990).

    Article  Google Scholar 

  35. 35.

    Z.F. Zhang and Z.G. Wang, Prog. Mater. Sci. 53, 1025 (2008).

    Article  Google Scholar 

  36. 36.

    S. Kobayashi, T. Inomata, H. Kobayashi, S. Tsurekawa, and T. Watanabe, J. Mater. Sci. 43, 3792 (2008).

    Article  Google Scholar 

  37. 37.

    H. Lu, W.-S. Loh, C. Bailey, and C.M. Johnson, in 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference (2008), pp. 22–24. doi:10.1109/ IMPACT.2008.4783883

  38. 38.

    T.Y. Hung, L.L. Liao, C.C. Wang, W.H. Chi, and K.N. Chiang, IEEE TDMR 14, 484 (2014).

    Google Scholar 

  39. 39.

    H. Medjahed, P.-E. Vivad, and B. Nogarede, in Proc. 6th International Conference on Integrated Power Systems (CIPS) (2012)

  40. 40.

    B. Czerny, M. Lederer, B. Nag, A. Trnka, G. Khatibi, and M. Thoben, Microelectron. Reliab. 52, 2353 (2012).

    Article  Google Scholar 

  41. 41.

    T.Y. Hung, S.Y. Chiang, C.J. Huang, C.C. Lee, and K.N. Chiang, Microelectron. Reliab. 51, 1819 (2011).

    Article  Google Scholar 

  42. 42.

    P.A. Agyakwa, L. Yang, M.R. Corfield, and C.M. Johnson, in Proc. 8 th International Conference on Integrated Power Systems (CIPS) (2014)

  43. 43.

    G. Khatibi, B. Weiss, J. Bernadi, and S. Schwarz, J. Electron. Mater. 41, 3436 (2012).

    Article  Google Scholar 

  44. 44.

    W.-S. Loh, S.C. Hogg, R.J. Ikujeniya, M.R. Corfield, P. Agyakwa, and C.M. Johnson, in Proc. International Conference on High Temperature Electronics (HiTEC) (Albuquerque, 2008)

  45. 45.

    C. Mi, D.A. Buttry, P. Sharma, and D.A. Kouris, J. Mech. Phys. Solids 59, 1858 (2011).

    Article  Google Scholar 

  46. 46.

    P. Shanthraj and M.A. Zikry, Int. J. Plast. 34, 154 (2012).

    Article  Google Scholar 

  47. 47.

    R.R. Keller, R.H. Geiss, N. Barbosa, A.J. Slifka, and D.T. Read, Metall. Mater. Trans. A 38, 2263 (2007).

    Article  Google Scholar 

  48. 48.

    Z.J. Zhang, P. Zhang, L.L. Li, and Z.F. Zhang, Acta Mater. 60, 3113 (2012).

    Article  Google Scholar 

  49. 49.

    P. Lukas and L. Kunz, Philos. Mag. 84, 317 (2004).

    Article  Google Scholar 

  50. 50.

    G. Khatibi, W. Wroczewski, B. Weiss, and T. Licht, Microelectron. Reliab. 48, 1822 (2008).

    Article  Google Scholar 

  51. 51.

    S. Ramminger, Siemens AG, Munich, Germany, personal communication, 2008

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Innovative Electronics Manufacturing Research Centre (IeMRC) funded by the UK Engineering and Physical Sciences Research Council (EPSRC) through research Grant EP/H03014X/1. The authors also wish to thank Dynex Semiconductor Ltd. for providing the wire bond samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pearl A. Agyakwa.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agyakwa, P.A., Yang, L., Arjmand, E. et al. Damage Evolution in Al Wire Bonds Subjected to a Junction Temperature Fluctuation of 30 K. Journal of Elec Materi 45, 3659–3672 (2016). https://doi.org/10.1007/s11664-016-4519-0

Download citation

Keywords

  • Aluminum
  • wire bonds
  • power cycling
  • reliability
  • x-ray tomography
  • high cycle thermal fatigue