Skip to main content
Log in

Thickness-, Composition-, and Magnetic-Field-Dependent Complex Impedance Spectroscopy of Granular-Type-Barrier Co/Co-Al2O3/Co MTJs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The alternating-current (ac) electrical properties of granular-type-barrier magnetic tunnel junctions (GBMTJs) based on Co/Co x (Al2O3)1−x (t)/Co trilayer structures have been studied using complex impedance spectroscopy (CIS). Their CIS characteristics were investigated in external magnetic fields varying from 0 kOe to 3 kOe as a function of Co composition x at 10 at.%, 25 at.%, and 35 at.%, with barrier layer thickness t of 20 nm to 90 nm. The influence of these factors on the behaviors of the ac impedance response of the GBMTJs was deeply investigated and attributed to the dielectric or conducting nature of the Co-Al2O3 barrier layer. The most remarkable typical phenomena observed in these behaviors, even appearing paradoxical, include lower impedance for thicker t for each given x, a declining trend of Z with increasing x, a clear decrease of Z with H, and especially a partition of Z into zones according to the H value. All these effects are analyzed and discussed to demonstrate that diffusion-type and mass-transfer-type phenomena can be inferred from processes such as spin tunneling and Coulomb or spin blockade in the Co-Al2O3 barrier layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).

    Article  Google Scholar 

  2. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Berers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rppls, P.L. Trouilloud, R.A. Wanner, and W.J. Gallagher, J. Appl. Phys. 85, 5828 (1999).

    Article  Google Scholar 

  3. E.Y. Tsymbal, O.L. Mryasov, and P.R. LeClair, J. Phys. Condens. Matter 15, R109 (2003).

    Article  Google Scholar 

  4. S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, Appl. Phys. Lett. 97, 242102 (2010).

    Article  Google Scholar 

  5. R. Liu, S.-H. Yang, X. Jiang, T. Topuria, P.M. Rice, C. Rettner, and S. Parkin, Appl. Phys. Lett. 100, 012401 (2012).

    Article  Google Scholar 

  6. H. Fujimori, S. Mitani, and S. Ohnuma, Mater. Sci. Eng. B 31, 219 (1995).

    Article  Google Scholar 

  7. L.F. Schelp, A. Fert, F. Fettar, P. Holody, S.F. Lee, J.L. Maurice, F. Petroff, and A. Vaurès, Phys. Rev. B 56, R5747 (1997).

    Article  Google Scholar 

  8. J.A.M. Santos, G.N. Kakazei, J.B. Sousa, S. Cardoso, P.P. Freitas, YuG Pogorelov, and E. Snoeck, J. Magn. Magn. Mater. 242–245, 485 (2002).

    Article  Google Scholar 

  9. M. Stopa, Phys. Rev. Lett. 88, 146802 (2002).

    Article  Google Scholar 

  10. W.A. Coish and F. Qassemi, Phys. Rev. B 84, 245407 (2011).

    Article  Google Scholar 

  11. N.T. Anh, G.V. Cuong, and N.A. Tuan, J. Magn. Magn. Mater. 374, 463 (2015).

    Article  Google Scholar 

  12. N.A. Tuan, T.T. Dung, and P.L. Minh, J. Magn. Magn. Mater. 304, e321 (2006).

    Article  Google Scholar 

  13. N.T. Anh, N.A. Tuan, N.T. Nga, N.A. Tue, and G.V. Cuong, Curr. Appl. Phys. 14, 13895 (2014).

    Article  Google Scholar 

  14. J. Barnaś and I. Weymann, J. Phys.: Condens. Matter 20, 423202 (2008).

    Google Scholar 

  15. L.F. Schelp, E.L. Rosa, J.-L. Maurice, F. Petroff, and A. Vaurés, J. Magn. Magn. Mater. 205, 170 (1999).

    Article  Google Scholar 

  16. H. Bakkali, M. Dominguez, X. Batlle, and A. Labarta, J. Phys. D Appl. Phys. 48, 335306 (2015).

    Article  Google Scholar 

  17. B. Abeles, P. Sheng, M.D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975).

    Article  Google Scholar 

  18. J.R. MacDonald, Ann. Biomed. Eng. 20, 289 (1992).

    Article  Google Scholar 

  19. M.B.A. Jalil, J. Appl. Phys. 91, 7628 (2002).

    Article  Google Scholar 

  20. S. Mitani, S. Takahashi, K. Takanashi, K. Yakushiji, S. Maekawa, and H. Fujimori, Phys. Rev. Lett. 81, 2799 (1998).

    Article  Google Scholar 

  21. B.J. Hattink, A. Labarta, M. Garcı´a del Muro, X. Batlle, F. Sánchez, and M. Varela, Phys. Rev. B 67, 033402 (2003).

    Article  Google Scholar 

  22. J.R Macdonald and W.B. Johnson, Impedance Spectroscopy—Theory, Experiment, and Applications, 2nd edn., ed. By E. Barsoukov, J.R. Macdonald (Wiley, Hoboken, NJ, 2005). pp. 1–26.

  23. M.E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy (New Jersey: Wiley, 2008), p. 21.

    Book  Google Scholar 

  24. M. Chshiev, D. Stoeffler, A. Vedyayev, and K. Ounadjela, Europhys. Lett. (EPL) 58, 257 (2002).

    Article  Google Scholar 

  25. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  26. D. Weinmann, W. Hausler, and B. Kramer, Phys. Rev. Lett. 77, 984 (1995).

    Article  Google Scholar 

  27. T.V. Pham, S. Miwa, D. Bang, T. Nozaki, F. Bonell, E. Tamura, N. Mizuochi, T. Shinjo, and Y. Suzuki, Solid State Commun. 183, 18 (2014).

    Article  Google Scholar 

  28. N. Bonanos, B.C.H. Steele, and E.P. Butler, Impedance Spectroscopy—Theory, Experiment, and Applications, 2nd edn, eds. by E. Barsoukov and J. R. Macdonald (Wiley, Hoboken, NJ, 2005), pp. 205–263.

  29. C. Derek Sinclair, Bol. Soc. Esp. Cerám. Vidrio 34, 55 (1995).

    Google Scholar 

  30. H. Imamura, H. Aoki, and P.A. Maksym, Phys. Rev. B 57, R4257 (1998).

    Article  Google Scholar 

Download references

Acknowledgement

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02.2012.65.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Anh Tuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, N.A., Anh, N.T., Nga, N.T. et al. Thickness-, Composition-, and Magnetic-Field-Dependent Complex Impedance Spectroscopy of Granular-Type-Barrier Co/Co-Al2O3/Co MTJs. J. Electron. Mater. 45, 3200–3207 (2016). https://doi.org/10.1007/s11664-016-4453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4453-1

Keywords

Navigation