Skip to main content
Log in

Vertically Well-Aligned ZnO Nanowire Arrays Directly Synthesized from Zn Vapor Deposition Without Catalyst

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Vertically well-aligned ZnO nanowire (NW) arrays with high density have been successfully synthesized on sapphire substrate by thermal evaporation of the zinc powders without catalysts or additives. The ZnO NWs were characterized by scanning electron microscopy, transmission electronic microscopy (TEM), x-ray diffraction, ultraviolet–visible, photoluminescence, Raman, and x-ray photoelectron spectroscopy. The results showed that the obtained ZnO NWs had diameters in the range of 100–130 nm, lengths over several micrometers and well aligned in the direction perpendicular to the substrate surface. The as-synthesized ZnO NWs, which were single crystalline in a hexagonal structure, showed uniform morphology, faceted planes at the tips of the NWs, and grown along the [001] direction. The as-synthesized NW arrays had a good crystal quality with excellent optical properties, showing a sharp and strong ultraviolet emission at 380 nm and a weak visible emission at around 500 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Geng, Y. Jiang, Y. Yao, X. Meng, J.A. Zapien, C.S. Lee, Y. Lifshitz, and S.T. Lee, Adv. Funct. Mater. 14, 589 (2004).

    Article  Google Scholar 

  2. Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, and X. Zhang, Chem. Mater. 14, 3564 (2002).

    Article  Google Scholar 

  3. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13, 113 (2001).

    Article  Google Scholar 

  4. Z.L. Wang, J. Phys. Condens. Matter 16, R829 (2004).

    Article  Google Scholar 

  5. P.X. Gao, Y. Ding, and Z.L. Wang, Nano Lett. 3, 1315 (2003).

    Article  Google Scholar 

  6. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, and D.P. Yu, Appl. Phys. Lett. 83, 1689 (2003).

    Article  Google Scholar 

  7. J. Zhang, L. Sun, C. Liao, and C. Yan, Chem. Commun. 3, 262 (2002).

    Article  Google Scholar 

  8. Y. Arakawa and H. Sasaki, Appl. Phys. Lett. 40, 939 (1982).

    Article  Google Scholar 

  9. B.P. Zhang, N.T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, Appl. Phys. Lett. 83, 1635 (2003).

    Article  Google Scholar 

  10. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, and S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001).

    Article  Google Scholar 

  11. Y. Sun, G.M. Fuge, and M.N.R. Ashfold, Chem. Phys. Lett. 396, 21 (2004).

    Article  Google Scholar 

  12. B.M. Ataev, I.K. Kiamilov, and V.V. Mamedov, Technol. Phys. Lett. 23, 842 (1997).

    Article  Google Scholar 

  13. L. Vayssieres, Adv. Mater. 15, 464 (2003).

    Article  Google Scholar 

  14. H.M. Cheng, H.C. Hsu, Y.K. Tseng, L.J. Lin, and W.F. Hsieh, J. Phys. Chem. B. 109, 8749 (2005).

    Article  Google Scholar 

  15. J.C. Johnson, H.Q. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, and P. Yang, J. Phys. Chem. B 105, 11387 (2001).

    Article  Google Scholar 

  16. Y.K. Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu, and I.C. Chen, Adv. Funct. Mater. 13, 811 (2003).

    Article  Google Scholar 

  17. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  Google Scholar 

  18. H.J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, and M. Zacharias, J. Crystal Growth 287, 34 (2006).

    Article  Google Scholar 

  19. H.J. Fan, F. Fleisher, W. Lee, K. Nielsch, R. Scholz, M. Zacharias, U. Gösele, A. Dadgar, and A. Krost, Superlattice Microst. 36, 95 (2004).

    Article  Google Scholar 

  20. H.K. Park, M.H. Oh, S.W. Kim, G.H. Kim, D.H. Youn, S. Lee, S.H. Kim, K.C. Kim, and S.L. Maeng, ETRI J. 28, 787 (2006).

    Article  Google Scholar 

  21. S.Y. Li, C.Y. Lee, and T.Y. Tseng, J. Cryst. Growth 247, 357 (2003).

    Article  Google Scholar 

  22. S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh, and H.J. Lee, Chem. Mater. 15, 3294 (2003).

    Article  Google Scholar 

  23. T.W. Kima, T. Kawazoe, S. Yamazaki, and T. Sekiguchi, Appl. Phys. Lett. 48, 3358 (2004).

    Article  Google Scholar 

  24. W. Lee, M.C. Jeong, and J.M. Myoung, Nanotehnology 15, 1441 (2004).

    Article  Google Scholar 

  25. S.H. Jo, J.Y. Lao, Z.F. Ren, R.A. Farrer, T. Baldacchini, and J.T. Fourkas, Appl. Phys. Lett. 83, 4821 (2003).

    Article  Google Scholar 

  26. Y.W. Zhu, X.C. Sun, S.Q. Feng, Q. Zhang, B. Xiang, R.M. Wang, and D.P. Yu, Appl. Phys. Lett. 83, 144 (2003).

    Article  Google Scholar 

  27. X. Zhu, H. Wu, Z. Yuan, J. Kong, and W. Shen, J. Raman Spectrosc. 40, 2155 (2009).

    Article  Google Scholar 

  28. M. Koyano, P. QuocBao, L.T. ThanhBinh, L. HongHa, N. NgocLong, and S. Katayama, Phys. Status Solidi 193, 125 (2002).

    Article  Google Scholar 

  29. A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R. Rumble and Jr, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.5, (data compiled and evaluated by C.D. Wagner, 2000), http://srdata.nist.gov/xps/.. Accessed 7 March 2012

  30. B.R. Strohmeier and D.M. Hercules, J. Catal. 86, 266 (1984).

    Article  Google Scholar 

  31. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie: Perkin Elmer, 1979).

    Google Scholar 

  32. C.Y. Leunga, A.B. Djurisic, Y.H. Leung, L. Ding, C.L. Yang, and W.K. Ge, J. Crystal Growth 290, 131 (2006).

    Article  Google Scholar 

  33. X.J. Yang, X.Y. Miao, X.L. Xu, C.M. Xu, J. Xu, and H.T. Liu, Opt. Mater. 27, 1602 (2005).

    Article  Google Scholar 

  34. C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, and S.J. Chua, Nanotechnology 15, 856 (2004).

    Article  Google Scholar 

  35. J.Y. Kim, H.W. Shim, E.K. Sun, T.Y. Kim, S.H. Lee, Y.H. Mo, and K.S. Nahm, J. Korean Phys. Soc. 44, 137 (2004).

    Google Scholar 

  36. A. Umar, H.W. Ra, J.P. Jeong, E.K. Suh, and Y.B. Hahn, Korean J. Chem. Eng. 23, 499 (2006).

    Article  Google Scholar 

  37. W.Y. Song, J.H. Yang, D.V. Dinh, T.I. Shin, S.M. Kang, S.W. Kim, and D.H. Yoon, J. Phys. Chem. Solids 69, 1486 (2008).

    Article  Google Scholar 

  38. G.C. Yi and W.I. Park, Adv. Mater. 14, 1841 (2002).

    Article  Google Scholar 

  39. H.P. He, Z.Z. Ye, S.S. Lin, B.H. Zhao, J.Y. Huang, and H.P. Tang, J. Phys. Chem. C 112, 14262 (2008).

    Article  Google Scholar 

  40. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).

    Article  Google Scholar 

  41. W. Lee, S.K. Min, V. Dhas, S.B. Ogale, and S.H. Han, Electrochem. Commun. 11, 103 (2009).

    Article  Google Scholar 

  42. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt, App. Phys. Lett. 68, 403 (1995).

    Article  Google Scholar 

  43. B.J. Jin, S.H. Bae, S.Y. Lee, and S. Im, Mater. Sci. Eng. B 71, 301 (2000).

    Article  Google Scholar 

  44. M. Guo, P. Diao, and S.M. Cai, J. Solid State Chem. 178, 1864 (2005).

    Article  Google Scholar 

  45. A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).

    Article  Google Scholar 

  46. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).

    Article  Google Scholar 

  47. L.W. Ji, S.M. Peng, J.S. Wu, W.S. Shih, C.Z. Wu, and I.T. Tang, J. Phys. Chem. Solids 70, 1359 (2009).

    Article  Google Scholar 

  48. Y. Dai, Y. Zhang, Y.Q. Bai, and Z.L. Wang, Chem. Phys. Lett. 375, 96 (2003).

    Article  Google Scholar 

  49. H.M. Hu, X.H. Huang, C.H. Deng, X.Y. Chen, and Y.T. Qian, Mater. Chem. Phys. 106, 58 (2007).

    Article  Google Scholar 

  50. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).

    Article  Google Scholar 

  51. J. Zhang, L.D. Sun, Y.J. Lin, H.L. Su, C.S. Liao, and C.H. Yan, Chem. Mater. 14, 4172 (2002).

    Article  Google Scholar 

  52. J.D. Park, H.H. Choi, K. Siebein, and R.K. Singh, J. Cryst. Growth 258, 342 (2003).

    Article  Google Scholar 

  53. J.Y. Chen, C.J. Pan, F.C. Tsao, C.H. Kuo, G.C. Chi, B.J. Pong, C.Y. Chang, D.P. Norton, and S.J. Pearton, Vacuum 83, 1076 (2009).

    Article  Google Scholar 

  54. H.Y. Lu, S.Y. Chu, and S.H. Cheng, J. Cryst. Growth 274, 506 (2005).

    Article  Google Scholar 

  55. J.J. Wu and S.C. Liu, J. Chem. B 106, 9546 (2002).

    Article  Google Scholar 

  56. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, and H.J. Choi, Adv. Funct. Mater. 12, 323 (2003).

    Article  Google Scholar 

  57. Y. Li, G.W. Meng, and L.D. Zhang, Appl. Phys. Lett. 76, 2011 (2000).

    Article  Google Scholar 

  58. Y.C. Wang, I.C. Leu, and M.H. Hon, J. Mater. Chem. 12, 2439 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Foundation for Science and Technology Development of Vietnam (NAFOSTED, code 104.03.2013.39).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tran Van Khai or Tran Dai Lam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Khai, T., Van Thu, L., Huu, N.T. et al. Vertically Well-Aligned ZnO Nanowire Arrays Directly Synthesized from Zn Vapor Deposition Without Catalyst. J. Electron. Mater. 45, 2601–2607 (2016). https://doi.org/10.1007/s11664-016-4429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4429-1

Keywords

Navigation