Skip to main content
Log in

Compact Test Structure to Measure All Thermophysical Properties for the In-Plane Figure of Merit ZT of Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports a versatile thermophysical test structure to measure all material properties contributing to the in-plane thermoelectric figure of merit \(ZT=S^2T\kappa ^{-1} \rho ^{-1}\) from a single thin film sample of only about 0.5 mm\(^2\). These properties are the Seebeck coefficient S of the sample against aluminum (Al), its thermal conductivity \(\kappa\) , and its resistivity \(\rho\). The thermal membrane-based test structure is produced using standard thin film deposition and structuring processes followed by silicon micromachining. It can be used to characterize thin films deposited at high temperature, such as doped polycrystalline silicon (poly-Si), as well as films deposited at low temperature, e.g., sputtered metals. We present the measurement of all components of the ZT of low-pressure, chemical vapor-deposited n- and p-doped poly-Si thin films in the temperature range from 300 K to 380 K. Values of 1.46 × 10−2 and 0.95 × 10−2 were found at room temperature (RT) for the ZT of n- and p-doped poly-Si films, respectively. Furthermore, the test structure was used to extract \(\rho\) and \(\kappa\) of a sputtered aluminum film in the same temperature range. The respective RT values are 48.7 × 10−9 \(\Omega {\hbox{m}}\) and 154 W m−1 K−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lahiji and K. Wise, IEEE Trans. Electron Devices 29, 14 (1982). doi:10.1109/T-ED.1982.20652

    Article  Google Scholar 

  2. D. Moser, R. Lenggenhager, and H. Baltes, Sensors Actuators A 27, 577 (1991). doi:10.1016/0924-4247(91)87054-7

    Article  Google Scholar 

  3. H. Glosch, M. Ashauer, U. Pfeiffer, and W. Lang, Sensors Actuators A 74, 246 (1999). doi:10.1016/S0924-4247(98)00298-2

    Article  Google Scholar 

  4. T. Huesgen, P. Woias, and N. Kockmann, Sensors Actuators A 145–146, 423 (2008). doi:10.1016/j.sna.2007.11.032

    Article  Google Scholar 

  5. H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, and K.H. Schlereth, J. Microelectromech. Syst. 13, 414 (2004). doi:10.1109/JMEMS.2004.828740

    Article  Google Scholar 

  6. G. Min, D. Rowe, and F. Volklein, Electron. Lett. 34, 222 (1998). doi:10.1049/el:19980148

    Article  Google Scholar 

  7. M. Nomura, Y. Kage, D. Mueller, D. Moser, and O. Paul, Appl. Phys. Lett. 106, 223106 (2015). doi:10.1063/1.4922198

    Article  Google Scholar 

  8. D. Moser, D. Ilkaya, D. Kopp, and O. Paul, Proceedings of IEEE Sensors Conference 2012 (New York, 2012), pp. 1–4. doi:10.1109/ICSENS.2012.6411144

  9. D.G. Cahill and R.O. Pohl, Phys. Rev. B 35, 4067 (1987). doi:10.1103/PhysRevB.35.4067

    Article  Google Scholar 

  10. C.A. Paddock and G.L. Eesley, J. Appl. Phys. 60, 285 (1986). doi:10.1063/1.337642

    Article  Google Scholar 

  11. F. Voelklein and E. Kessler, Exp. Tech. Phys. 33, 343 (1985)

    Google Scholar 

  12. F. Voelklein and H. Baltes, J. Microelectromech. Syst. 1, 193 (1992). doi:10.1109/JMEMS.1992.752511

    Article  Google Scholar 

  13. M. von Arx, O. Paul, and H. Baltes, J. Microelectromech. Syst. 9, 136 (2000). doi:10.1109/84.825788

    Article  Google Scholar 

  14. O. Boffoue, A. Jacquot, A. Dauscher, B. Lenoir, and M. Stoelzer, Rev. Sci. Instrum. 76, 053907 (2005). doi:10.1063/1.1912820

    Article  Google Scholar 

  15. M. von Arx, O. Paul, and H. Baltes, IEEE Trans Semicond. Manuf. 10, 201 (1997). doi:10.1109/66.572069

    Article  Google Scholar 

  16. J. Xie, C. Lee, M.F. Wang, and J. Tsai, Microsyst. Technol. 17, 77 (2011). doi:10.1007/s00542-010-1183-9

    Article  Google Scholar 

  17. F.M. Smits, Bell Syst. Tech. J. 37, 711 (1958). doi:10.1002/j.1538-7305.1958.tb03883.x

    Article  Google Scholar 

  18. L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958)

    Google Scholar 

  19. A. Jacquot, G. Chen, H. Scherrer, A. Dauscher, and B. Lenoir, Sensors Actuators A 117(2), 203 (2005). doi:10.1016/j.sna.2004.06.013

    Article  Google Scholar 

  20. N.D. Arora, J.R. Hauser, and D.J. Roulston, IEEE Trans. Electron Devices 29, 292 (1982). doi:10.1109/T-ED.1982.20698

    Article  Google Scholar 

  21. D.R. Lide, ed., CRC Handbook of Chemistry and Physics, 76th edn. (Boca Raton: CRC Press, 1995), pp. 12–46 and 12–172

  22. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, 2005)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Masahiro Nomura for valuable discussions. This work was partially funded by Deutsche Forschungsgemeinschaft (DFG) under the research training group “Micro Energy Harvesting”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Moser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, D., Mueller, D. & Paul, O. Compact Test Structure to Measure All Thermophysical Properties for the In-Plane Figure of Merit ZT of Thin Films. J. Electron. Mater. 45, 5507–5513 (2016). https://doi.org/10.1007/s11664-016-4405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4405-9

Keywords

Navigation