Skip to main content
Log in

Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K

  • Invited Papers
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The characterization of nanostructured samples with at least one restricted dimension like thin films or nanowires is challenging but important to understand their structure and transport mechanism and to improve current industrial products and production processes. We report on the development of a chip-based platform to simultaneously measure the in-plane electrical and thermal conductivity, the Seebeck coefficient as well as the Hall constant of a thin film in the temperature range from 120 K up to 450 K and in a magnetic field of up to 1 T. Due to the design of the setup, time consuming preparation steps can be omitted and a nearly simultaneous measurement of the sample properties is achieved. Typical errors caused by different sample compositions, varying sample geometries, and different heat profiles are avoided with the presented measurement method. As a showcase study displaying the validity and accuracy of our system, we present measurements of the thermoelectric properties of a 110 nm Bi87Sb13 thin film in the temperature range from 120 K up to 450 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. A.M. Burke, D.J. Carrad, J.G. Gluschke, K. Storm, S. Fahlvik Svensson, H. Linke, L. Samuelson, and A.P. Micolich: InAs nanowire transistors with multiple, independent wrap-gate segments. Nano Lett. 15 (5), 2836–2843 (2015).

    Article  CAS  Google Scholar 

  2. H.J. Goldsmid and R.W. Douglas: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5 (11), 386 (1954).

    Article  Google Scholar 

  3. A. Shakouri: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41 (1), 399–431 (2011).

    Article  CAS  Google Scholar 

  4. A. Shakouri and M. Zebarjadi: Nanoengineered materials for thermoelectric energy conversion. In Thermal Nanosystems and Nanomaterials, Topics in Applied Physics, Vol. 118, S. Volz ed.; Springer: Berlin, Heidelberg, Germany, 2009; pp. 225–299.

    Chapter  Google Scholar 

  5. K. Nielsch, J. Bachmann, J. Kimling, and H. Böttner: Thermoelectric nanostructures: From physical model systems towards nanograined composites. Adv. Energy Mater. 1 (5), 713–731 (2011).

    Article  CAS  Google Scholar 

  6. L.D. Hicks and M.S. Dresselhaus: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B: Condens. Matter Mater. Phys. 47 (19), 12727–12731 (1993).

    Article  CAS  Google Scholar 

  7. C. Dames: Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat Transfer 16 (16), 7–49 (2013).

    Article  Google Scholar 

  8. J-H. Bahk, T. Favaloro, and A. Shakouri: Thin film thermoelectric characterization techniques. Annu. Rev. Heat Transfer 16 (1), 51–99 (2013).

    Article  Google Scholar 

  9. S. Zastrow, J. Gooth, T. Boehnert, S. Heiderich, W. Toellner, S. Heimann, S. Schulz, and K. Nielsch: Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition. Semicond. Sci. Technol. 28 (3), 35010 (2013).

    Article  Google Scholar 

  10. L.J. Van der Pauw: A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech. Rev. 20 (8), 220–224 (1958).

    Google Scholar 

  11. G. Chen, B. Yang, W.L. Liu, T. Borca-Tasciuc, D. Song, D. Achimov, and M.S. Dresselhaus: Thermoelectric property characterization of low-dimensional structures. In Proceedings of the XX International Conference on Thermoelectrics (IEEE, Beijing, 2001); pp. 30–34.

    Google Scholar 

  12. B. Yang, J.L. Liu, K.L. Wang, and G. Chen: Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice. Appl. Phys. Lett. 80 (10), 1758–1760 (2002).

    Article  CAS  Google Scholar 

  13. B.L. Zink and F. Hellman: Specific heat and thermal conductivity of low-stress amorphous Si–N membranes. Solid State Commun. 129 (3), 199–204 (2004).

    Article  CAS  Google Scholar 

  14. R. Sultan, A.D. Avery, G. Stiehl, and B.L. Zink: Thermal conductivity of micromachined low-stress silicon-nitride beams from 77 to 325 K. J. Appl. Phys. 105 (4), 43501 (2009).

    Article  Google Scholar 

  15. D.G. Cahill: Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61 (2), 802–808 (1990).

    Article  CAS  Google Scholar 

  16. A. Sikora, H. Ftouni, J. Richard, C. Hébert, D. Eon, F. Omnès, and O. Bourgeois: Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method. Rev. Sci. Instrum. 83 (5), 54902 (2012).

    Article  CAS  Google Scholar 

  17. D.G. Cahill, M. Katiyar, and J.R. Abelson: Thermal conductivity of α-Si:H thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 50 (9), 6077–6081 (1994).

    Article  CAS  Google Scholar 

  18. Y.S. Ju, K. Kurabayashi, and K.E. Goodson: Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating. Thin Solid Films 339 (1–2), 160–164 (1999).

    Article  CAS  Google Scholar 

  19. C.L. Hapenciuc, F.J. Khan, T. Borca-Tasciuc, and G-C. Wang: Development of experimental techniques for thermoelectric properties characterization of low-dimensional structures, in Thermoelectric Materials 2003-Research and Applications, edited by T.P. Hogan, D.C. Johnson, G.S. Nolas, and J. Yang (Mater. Res. Soc. Symp. Proc. 793, Boston, MA, 2003) p. S7.5.1.

  20. R. Singh, Z. Bian, A. Shakouri, G. Zeng, J-H. Bahk, J.E. Bowers, J.M.O. Zide, and A.C. Gossard: Direct measurement of thin-film thermoelectric figure of merit. Appl. Phys. Lett. 94 (21), 212508 (2009).

    Article  Google Scholar 

  21. R. Singh, Z. Bian, G. Zeng, J. Zide, J. Christofferson, H-F. Chou, A. Gossard, J. Bowers, and A. Shakouri: Transient Harman measurement of the cross-plane ZT of InGaAs/InGaAlAs superlattices with embedded ErAs nanoparticles, in Materials and Technologies for Direct Thermal-to-Electric Energy Conversion, edited by J. Yang, T.P. Hogan, R. Funahashi, and G.S. Nolas (Mater. Res. Soc. Symp. Proc. 886, Boston, MA, 2005) p. 0886-F04.

  22. Z. Bian, Y. Zhang, H. Schmidt, and A. Shakouri: Thin film ZT characterization using transient Harman technique. In Proceedings of the 24th International Conference on Thermoelectrics (Clemson, SC, USA, 2005); pp. 76–78.

    Google Scholar 

  23. F. Völklein, H. Reith, and A. Meier: Measuring methods for the investigation of in-plane and cross-plane thermal conductivity of thin films. Phys. Status Solidi A 210 (1), 106–118 (2013).

    Article  Google Scholar 

  24. F. Völklein: Thermal conductivity and diffusivity of a thin film SiO2-Si3N4 sandwich system. Thin Solid Films 188 (1), 27–33 (1990).

    Article  Google Scholar 

  25. T. Stärz, U. Schmidt, and F. Völklein: Microsensor for in situ thermal conductivity measurements of thin films. Sens. Mater. 7 (6), 395–403 (1995).

    Google Scholar 

  26. A. Sikora, H. Ftouni, J. Richard, C. Hébert, D. Eon, F. Omnès, and O. Bourgeois: Erratum: “Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method” [Rev. Sci. Instrum. 83, 054902 (2012)]. Rev. Sci. Instrum. 84 (2), 29901 (2013).

    Article  Google Scholar 

  27. H. Ftouni, D. Tainoff, J. Richard, K. Lulla, J. Guidi, E. Collin, and O. Bourgeois: Specific heat measurement of thin suspended SiN membrane from 8 K to 300 K using the 3ω-Völklein method. Rev. Sci. Instrum. 84 (9), 94902 (2013).

    Article  Google Scholar 

  28. F. Völklein and E. Kessler: Thermoelectric properties of Bi1−xSbx films with 0 < x ≤ 0.3. Thin Solid Films 155 (2), 197–208 (1987).

    Article  Google Scholar 

  29. F. Völklein and E. Kessler: Thermal conductivity and thermoelectric figure of merit of Bi1−xSbx films with 0 < x ≤ 0.3. Phys. Status Solidi B 143 (1), 121–130 (1987).

    Article  Google Scholar 

  30. F. Völklein and U. Dillner: Mobilities and concentrations of charge carriers in polycrystalline Bi0.87Sb0.13 films. Phys. Status Solidi B 162 (1), 147–153 (1990).

    Article  Google Scholar 

  31. T.J. Coutts, D.L. Young, X. Li, W.P. Mulligan, and X. Wu: Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4. J. Vac. Sci. Technol., A 18 (6), 2646–2660 (2000).

    Article  CAS  Google Scholar 

  32. V.I. Kaydanov, T.J. Coutts, and D.L. Young: Studies of band structure and free carrier scattering in transparent conducting oxides based on combined measurements of electron transport phenomena. Material Research Society Workshop (Denver, CO, 2000).

  33. W.P. Mulligan and T.J. Coutts: Measurement of the effective mass of transparent conducting films of cadmium tin oxide, in Flat Panel Display Materials III, edited by G. Parsons, R. Fulks, D. Slobodin, and T. Yuzuriha] (Mater. Res. Soc. Symp. Proc. 471, Boston, MA, 1997) p. 117.

  34. D.L. Young, T.J. Coutts, V.I. Kaydanov, A.S. Gilmore, and W.P. Mulligan: Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena. J. Vac. Sci. Technol., A 18 (6), 2978–2985 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Linseis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linseis, V., Völklein, F., Reith, H. et al. Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K. Journal of Materials Research 31, 3196–3204 (2016). https://doi.org/10.1557/jmr.2016.353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.353

Navigation