Skip to main content
Log in

A Highly Efficient and Facile Approach for Fabricating Graphite Nanoplatelets

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we report a highly efficient, convenient, and cost-effective technique for producing graphite nanoplatelets (GNPs) from plasma-expanded graphite oxides (PEGOs) obtained directly from low-cost, recycled graphite electrodes of used batteries, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy confirmed the successful preparation of GNPs. Scanning electron microscopy revealed that the GNPs have lateral width from several hundreds of nanometers to 1.5 μm with an approximate thickness of 20–50 nm. These GNPs can serve as a precursor for the preparation of GNPs-based nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  2. B.Z. Jang and A. Zhamu, J. Mater. Sci. 43, 5092 (2008).

    Article  Google Scholar 

  3. F.C. Fim, J.M. Guterres, N.R.S. Basso, and G.B. Galland, J. Polym. Sci. Part A 48, 692 (2010).

    Article  Google Scholar 

  4. M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Muñoz-Sandoval, A.G. Cano-Márquez, J.C. Charlier, and H. Terrones, Nano Today 5, 351 (2010).

    Article  Google Scholar 

  5. Y. Geng, S.J. Wang, and J.-K. Kim, J. Colloid Interface Sci. 336, 592 (2009).

    Article  Google Scholar 

  6. C. Min, D. Yu, J. Cao, G. Wang, and L. Feng, Carbon 55, 116 (2013).

    Article  Google Scholar 

  7. G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao, Carbon 47, 3242 (2009).

    Article  Google Scholar 

  8. L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, and R.B. Kaner, J. Mater. Chem. 15, 974 (2005).

    Article  Google Scholar 

  9. J.-Y. Kim, W.H. Lee, J.W. Suk, J.R. Potts, H. Chou, I.N. Kholmanov, R.D. Piner, J. Lee, D. Akinwande, and R.S. Ruoff, Adv. Mater. 25, 2308 (2013).

    Article  Google Scholar 

  10. B. Li and W.-H. Zhong, J. Mater. Sci. 46, 5595 (2011).

    Article  Google Scholar 

  11. S.C. Tjong, Energy Environ. Sci. 4, 605 (2011).

    Article  Google Scholar 

  12. F. He, S. Lau, H.L. Chan, and J. Fan, Adv. Mater. 21, 710 (2009).

    Article  Google Scholar 

  13. K.M.F. Shahil and A.A. Balandin, Nano Lett. 12, 861 (2012).

    Article  Google Scholar 

  14. G. De Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, and M.S. Sarto, Carbon 49, 4291 (2011).

    Article  Google Scholar 

  15. J. Wang, K.K. Manga, Q. Bao, and K.P. Loh, J. Am. Chem. Soc. 133, 8888 (2011).

    Article  Google Scholar 

  16. K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, and K. Müllen, ACS Nano 7, 3598 (2013).

    Article  Google Scholar 

  17. H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, Biomacromolecules 11, 2345 (2010).

    Article  Google Scholar 

  18. Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, and Y. Chen, Nano Res. 3, 661 (2010).

    Article  Google Scholar 

  19. C. Knieke, A. Berger, M. Voigt, R.N.K. Taylor, J. Röhrl, and W. Peukert, Carbon 48, 3196 (2010).

    Article  Google Scholar 

  20. M.V. Antisari, A. Montone, N. Jovic, E. Piscopiello, C. Alvani, and L. Pilloni, Scr Mater. 55, 1047 (2006).

    Article  Google Scholar 

  21. G. Chen, W. Weng, D. Wu, C. Wu, J. Lu, P. Wang, and X. Chen, Carbon 42, 753 (2004).

    Article  Google Scholar 

  22. G. Chen, D. Wu, W. Weng, and C. Wu, Carbon 41, 619 (2003).

    Article  Google Scholar 

  23. J. Li, L. Vaisman, G. Marom, and J.-K. Kim, Carbon 45, 744 (2007).

    Article  Google Scholar 

  24. M. Cai, D. Thorpe, D.H. Adamson, and H.C. Schniepp, J. Mater. Chem. 22, 24992 (2012).

    Article  Google Scholar 

  25. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, J. Phys. Chem. C 112, 8192 (2008).

    Article  Google Scholar 

  26. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, and M. Ye, Chem. Mater. 21, 3514 (2009).

    Article  Google Scholar 

  27. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, and R.S. Ruoff, J. Mater. Chem. 16, 155 (2006).

    Article  Google Scholar 

  28. L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898).

    Article  Google Scholar 

  29. U. Hofmann and E. König, Z. Anorgani. Allg. Chem. 234, 311 (1937).

    Article  Google Scholar 

  30. W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  31. W. Gu, W. Zhang, X. Li, H. Zhu, J. Wei, Z. Li, Q. Shu, C. Wang, K. Wang, W. Shen, F. Kang, and D. Wu, J. Mater. Chem. 19, 3367 (2009).

    Article  Google Scholar 

  32. D.D. Nguyen, N.H. Tai, Y.L. Chueh, S.Y. Chen, Y.J. Chen, W.S. Kuo, T.W. Chou, C.S. Hsu, and L.J. Chen, Nanotechnology 22, 295606 (2011).

    Article  Google Scholar 

  33. H.L. Poh, F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, and M. Pumera, Nanoscale 4, 3515 (2012).

    Article  Google Scholar 

  34. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  35. S. Park and R.S. Ruoff, Nat. Nano 4, 217 (2009).

    Article  Google Scholar 

  36. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, and I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006).

    Article  Google Scholar 

  37. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  Google Scholar 

  38. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).

    Article  Google Scholar 

  39. D.V. Thanh, H.-C. Chen, L.-J. Li, C.-W. Chu, and K.-H. Wei, RSC Adv. 3, 17402 (2013).

    Article  Google Scholar 

  40. H.-K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.-H. Park, K.H. An, I.J. Kim, C.-W. Yang, C.Y. Park, R.S. Ruoff, and Y.H. Lee, J. Am. Chem. Soc. 130, 1362 (2008).

    Article  Google Scholar 

  41. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).

    Article  Google Scholar 

Download references

Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Numbers of 103.02-2014.68 and 103.99-2014.71, Vietnam Academy of Science and Technology (VAST) under Grant Numbers of VAST.CTG.01/15-16 and VAST.TĐ.AN-QP.02/14-16. A part of the work was done with the help of the Key Laboratory in Electronic Materials and Devices, Institute of Materials Science, Vietnam. We also thank Dr. Le Huu Phuoc at Department of Electrophysics, National Chiao Tung University, Hsinchu, 30010 Taiwan, ROC for help with SEM/TEM imaging and four probes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tran Dai Lam or Phan Ngoc Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thanh, D., Van Thien, N., Thang, B.H. et al. A Highly Efficient and Facile Approach for Fabricating Graphite Nanoplatelets. J. Electron. Mater. 45, 2522–2528 (2016). https://doi.org/10.1007/s11664-016-4399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4399-3

Keywords

Navigation