Skip to main content
Log in

Influence of Ti Doping on the Critical Behavior and Magnetocaloric Effect in Disordered Ferromagnets La0.7Ba0.3Mn1−x Ti x O3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Ti-substitution influence on the magnetic and magnetocaloric properties of La0.7Ba0.3Mn1−x Ti x O3 (x = 0.05 and 0.1) was investigated. Based on Banerjee’s criteria and Franco’s universal curves, we proved the existence of a second-order magnetic phase transition in the samples. Using the modified Arrott plot method, we determined the critical parameters T C ≈ 245 K, β = 0.374 ± 0.013, γ = 1.228 ± 0.045, and δ = 4.26 ± 0.03 for x = 0.05, and T C ≈ 169 K, β = 0.339 ± 0.001, γ = 1.307 ± 0.003, and δ = 4.78 ± 0.02 for x = 0.1. With these critical values, the predictable scaling behavior of the M(H) data above and below T C proves that the calculated exponents are unambiguous and intrinsic. The values β = 0.374 for x = 0.05 and β = 0.339 for x = 0.1 suggest that the magnetic phase transition of the samples falls into the three-dimensional (3D) Heisenberg and 3D Ising universality classes, respectively, corresponding to short-range ferromagnetic (FM) order due to FM clusters in a wide temperature range even above T C, as confirmed by electron spin resonance studies. In reference to the magnetocaloric effect around T C, the magnetic entropy change reaches maximum values (|ΔSmax|) of about 4 and 3 J kg−1 K−1 for x = 0.05 and 0.1, respectively, for a magnetic field change 50 kOe. Magnetic field dependencies of |ΔSmax| obey a power function |ΔSmax(H)| ∝ H n, where exponent values n = 0.59 and 0.61 for x = 0.05 and 0.1, respectively, were determined from the relation n = 1 + (β-1)/(β + γ). The difference between the experimental n values and the theoretical value n = 2/3 of the mean field model is due to the presence of short-range FM order in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gasmi, M. Boudard, S. Zemni, F. Hippert, and M. Oumezzine, J. Phys. D 42, 225408 (2009).

  2. M.H. Phan and S.C. Yu, Phys. Stat. Sol. (a) 204, 4091 (2007).

    Article  Google Scholar 

  3. M.S. Kim, J.B. Yang, Q. Cai, X.D. Zhou, W.J. James, W.B. Yelon, P.E. Parris, D. Buddhikot, and S.K. Malik, Phys. Rev. B 71, 014433 (2005).

    Article  Google Scholar 

  4. A. Arrott and J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967).

    Article  Google Scholar 

  5. J.J. Urban, L. Ouyang, M.H. Jo, D.S. Wang, and H. Park, Nano Lett. 4, 1547 (2004).

    Article  Google Scholar 

  6. H.L. Ju, Y.S. Nam, J.E. Lee, and H.S. Shin, J. Magn. Magn. Mater. 219, 1 (2000).

    Article  Google Scholar 

  7. N. Kallel, G. Dezanneau, J. Dhahri, M. Oumezzine, and H. Vincent, J. Magn. Magn. Mater. 261, 56 (2003).

    Article  Google Scholar 

  8. A. Gasmi, M. Boudard, S. Zemni, F. Hippert, and M. Oumezzine, J. Phys. D: Appl. Phys. 42, 225408 (2009).

  9. F. Ben Jemaa, S.H. Mahmood, M. Ellouze, E.K. Hlil, and F. Halouani, J. Mater. Sci. 49, 6883 (2014).

  10. J. Wu and C. Leighton, Phys. Rev. B 67, 174408 (2003).

  11. S.K. Banerjee, Phys. Lett. 12, 16 (1964).

    Article  Google Scholar 

  12. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (London: Oxford University Press, 1971).

    Google Scholar 

  13. L. Zhang, J.Y. Fan, L. Li, R.W. Li, L.S. Ling, Z. Qu, W. Tong, S. Tan, and Y.H. Zhang, Europhys. Lett. 91, 57001 (2010).

    Article  Google Scholar 

  14. B. Widom, J. Chem. Phys. 43, 3898 (1965).

    Article  Google Scholar 

  15. S. Rößler, U.K. Rößler, K. Nenkov, D. Eckert, S.M. Yusuf, K. Dörr, and K.-H. Müller, Phys. Rev. B 70, 104417 (2004).

    Article  Google Scholar 

  16. S.N. Kaul, J. Magn. Magn. Mater. 53, 5 (1985).

    Article  Google Scholar 

  17. K. Huang, Statistical Mechanics (New York: Wiley, 1987).

    Google Scholar 

  18. J. Yang and Y.P. Lee, Appl. Phys. Lett. 91, 142512 (2007).

    Article  Google Scholar 

  19. W.J. Jiang, X.Z. Zhou, G. Williams, Y. Mukovskii, and K. Glazyrin, Phys. Rev. B 77, 064424 (2008).

    Article  Google Scholar 

  20. S. Ghodhbane, A. Dhahri, N. Dhahri, E.K. Hlil, J. Dhahri, M. Alhabradi, and M. Zaidi, J. Alloys Compd. 580, 558 (2013).

    Article  Google Scholar 

  21. T.A. Ho, D.-T. Quach, T.D. Thanh, T.O. Ho, M.H. Phan, T.L. Phan, and S.C. Yu, IEEE Trans. Magn. 51, 2501304 (2015).

  22. M.E. Fisher, S.K. Ma, and B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972).

    Article  Google Scholar 

  23. M. Oumezzine, O. Peña, S. Kallel, N. Kallel, T. Guizouarn, F. Gouttefangeas, and M. Oumezzine, Appl. Phys. A 13, 7681 (2013).

  24. T.L. Phan, S.C. Yu, N.V. Khiem, M.H. Phan, J.R. Rhee, and N.X. Phuc, J. Appl. Phys. 97, 10A508 (2005).

    Google Scholar 

  25. V. Franco, J.S. Blázquez, and A. Conde, Appl. Phys. Lett. 89, 222512 (2006).

    Article  Google Scholar 

  26. V. Franco and A. Conde, Int. J. Ref. 33, 465 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Converging Research Center Program through the Ministry of Science, ICT and Future Planning, South Korea (2015055808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, T.A., Phan, M.H., Phuc, N.X. et al. Influence of Ti Doping on the Critical Behavior and Magnetocaloric Effect in Disordered Ferromagnets La0.7Ba0.3Mn1−x Ti x O3 . J. Electron. Mater. 45, 2508–2515 (2016). https://doi.org/10.1007/s11664-016-4397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4397-5

Keywords

Navigation