Skip to main content
Log in

Critical behavior near the ferromagnetic–paramagnetic phase transition in La0.5Pr0.3Ba0.2Mn1−xTixO3 (x = 0.0 and 0.1)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The \({\text{La}}_{0.5 } { \Pr }_{0.3} {\text{Ba}}_{0.2} {\text{Mn}}_{1 - x} {\text{Ti}}_{x} {\text{O}}_{3}\) (x = 0.0 and 0.1) compounds were elaborated by the solid-state reaction method. The X-ray diffraction characterization has indicated that these samples crystallized in the rhombohedral symmetry with \(R\bar{3}C\) space group. The magnetic results which we obtain indicated that both samples show a paramagnetic–ferromagnetic transition with decreasing Curie temperature (\(T_{\text{C}}\)) from 170 K (x = 0.0) to 110 K (x = 0.1). The zero-field cold curve for x = 0.1 compound exhibit a clear cusp at low temperature (T = 35 K) that is generally related to a spin-glass or a cluster-glass state. Furthermore, the critical exponents’ values were founded by different techniques. Therefore, the average values of the critical exponent and the critical temperature obtained by the various methods are (\(\beta_{\text{moy}}\) = 0.296; \(\gamma_{\text{moy}}\) = 1.126; \(\delta_{\text{moy}}\) = 4.875; \(T_{\text{C}}\) = 177.63) and (\(\beta_{\text{moy}}\) = 0.26; \(\gamma_{\text{moy}}\) = 1.081; \(\delta_{\text{moy}}\) = 5.155; \(T_{\text{C}}\) = 109.99 K) for x = 0.0 and 0.1, respectively. The obtained critical exponents are in agreement with those forecasted out by the 3D-Ising model and the tricritical mean-field model for x = 0.0 and 0.1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Chahara, T. Ohno, M. Kasai, Y. Kosono, Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett. 63, 1990 (1993)

    Article  ADS  Google Scholar 

  2. H. Gharsallah, M. Bejar, E. Dhahri, E.K. Hlil, L. Bessais, Prediction of magnetocaloric effect in La0.6Ca0.4−xSrxMnO3 compounds for x = 0, 0.05 and 0.4 with phenomenological model. Ceram. Int. 42, 697–704 (2016)

    Article  Google Scholar 

  3. M. Khlifi, M. Bejar, O.E.L. Sadek, E. Dhahri, M.A. Ahmed, E.K. Hlil, Structural, magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2−xxMnO3 (x = 0–0.20) manganites oxides. J. Alloys Compd. 509, 7410–7415 (2011)

    Article  Google Scholar 

  4. N. Zener, Interaction between the d-Shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  5. A. Benali, M. Bejar, E. Dhahri, E.K. Hlil, Study of critical behavior of perovskite La0.8Ca0.2−xPbxFeO3 (x = 0.0, 0.1 and 0.2) compounds. J. Alloys Compd. 638, 305–312 (2015)

    Article  Google Scholar 

  6. H. Gharsallah, M. Bejar, E. Dhahri, E.K. Hlil, Critical behavior in the La0.6Ca0.4−xSrxMnO3 nano-particle compounds for x = 0, 0.05 and 0.4. J. Phys. Chem. Solids 109, 50–63 (2017)

    Article  ADS  Google Scholar 

  7. M. Dhahri, J. Dhahri, E.K. Hlil, Critical behavior near the ferromagnetic to paramagnetic phase transition temperature in polycrystalline La0.5Sm0.1Sr0.4Mn1−xInxO3 (0 ≤ x ≤ 0.1). J. Magn. Magn. Mater. 434, 100–104 (2017)

    Article  ADS  Google Scholar 

  8. X. Zhu, Y. Sun, X. Luo, H. Lei, B. Wang, W. Song, Z. Yang, J. Dai, D. Shi, S. Dou, Crossover of critical behavior in La0.7Ca0.3Mn1−xTixO3. J. Magn. Magn. Mater. 322, 242–246 (2010)

    Article  ADS  Google Scholar 

  9. T.L. Phan, P.Q. Thanh, N.H. Sinh, K.W. Lee, S.C. Yu, Critical behavior and magnetic entropy change in La0.7Ca0.3Mn0.9Zn0.1O3 perovskite manganite. Curr. Appl. Phys. 11, 830–833 (2011)

    Article  ADS  Google Scholar 

  10. S.El. Kossi, S. Mnefgui, J. Dhahri, E.K. Hlil, Critical behavior and its correlation with magnetocaloric effect in La0.7Sr0.25Na0.05Mn(1−x)TixO3 (0 ≤ x ≤ 0.1) manganite oxide. Ceram. Int. 41, 8331–8340 (2015)

    Article  Google Scholar 

  11. A.K. Pramanik, A. Banerjee, Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3: a bulk magnetization study. Phys. Rev. B 79, 214426 (2009)

    Article  ADS  Google Scholar 

  12. H. Felhi, M. Smari, I. Walha, E. Dhahri, M.A. Valente, L. Bessais, Influence of insolubility of silver on the Hirshfeld surface analyses and magnetic behavior of La0.5Ca0.1Ag0.4MnO3 compound. Chem. Phys. Lett. 691, 262–270 (2018)

    Article  ADS  Google Scholar 

  13. R. Hamdi, J. Khelifi, I. Walha, E. Dhahri, E.K. Hlil, Impact of titanium doping on structural, magnetic and magnetocaloric properties and order of transition in La0.5Pr0.3Ba0.2Mn1−xTixO3 (x = 0.0 and 0.1) manganite. J. Supercond. Nov. Magn. (2019). https://doi.org/10.1007/s10948-019-5142-0

    Article  Google Scholar 

  14. Y. Motome, N. Furukawa, Disorder effect on spin excitation in double-exchange systems. Phys. Rev. B 71, 014446 (2005)

    Article  ADS  Google Scholar 

  15. H.E. Sekrafi, ABJa Kharrat, N. Chniba-Boudjada, W. Boujelben, Effect of Ti substitution on the critical behavior around the paramagnetic–ferromagnetic phase transition of Pr0.75Bi0.05Sr0.1Ba0.1Mn1−xTixO3 (x = 0, 0.02 and 0.04) perovskite compounds. J. Alloys Compd. 790, 27–35 (2019)

    Article  Google Scholar 

  16. F. Issaoui, M. Bejar, E. Dhahri, M. Bekri, P. Lachkar, E.K. Hlil, Crystal, spin glass, Griffiths phases and magneticaloric properties of the Sr1.5Nd0.5MnO4 compound. Phys. B 414, 42–49 (2013)

    Article  ADS  Google Scholar 

  17. N. Kallel, M. Oumezzine, H. Vincent, Neutron-powder-diffraction study of structural and magnetic structure of La0.7Sr0.3Mn1−xTixO3 (x = 0, 0.10, 0.20, and 0.30). J. Magn. Magn. Mater. 320, 1810–1816 (2008)

    Article  ADS  Google Scholar 

  18. M. Sahana, K. Dörr, M. Doerr, D. Eckert, K.-H. MuKller, K. Nenkov, L. Schultz, M.S. Hegde, Magnetism of Ti4+ diluted manganites La1−xPbxMn1−yTiyO3 (y ≤ x). J. Magn. Magn. Mater. 213, 253–261 (2000)

    Article  ADS  Google Scholar 

  19. N. Assoudi, M. Smari, I. Walha, E. Dhahri, S. Shevyrtalov, O. Dikaya, V. Rodionova, Unconventional critical behavior near the phase transition temperature and magnetocaloric effect in La0.5Ca0.4Ag0.1MnO3 compound. Chem. Phys. Lett. 706, 182–188 (2018)

    Article  ADS  Google Scholar 

  20. M. Nasri, M. Triki, E. Dhahri, M. Hussein, P. Lachkar, E.K. Hlil, Investigation of structural, magnetocaloric and electrical properties of La0.6Ca0.4−xSrxMnO3 compounds. Phys. B Condens. Matter. 408, 104–109 (2013)

    Article  ADS  Google Scholar 

  21. J. Yang, Y.P. Lee, Critical behavior in Ti-doped manganites LaMn1−xTixO3 (0.05 ≤ x ≤ 0.2). Appl. Phys. Lett. 91, 142512 (2007)

    Article  ADS  Google Scholar 

  22. Y.K. Fu, X. Luo, Z.H. Huang, L. Hu, W.J. Lu, B.C. Zhao, Y.P. Sun, Critical behavior of spinel vanadate MnV1.95Al0.05O4. J. Magn. Magn. Mater. 326, 205–209 (2013)

    Article  ADS  Google Scholar 

  23. A. Omri, A. Tozri, M. Bejar, E. Dhahri, E.K. Hlil, Critical behavior in Ga-doped manganites La0.75 (Sr, Ca)0.25Mn1−xGaxO3 (0 ≤ x ≤ 0.1). J. Magn. Magn. Mater. 324, 3122–3128 (2012)

    Article  ADS  Google Scholar 

  24. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Chapter 12.4) (Oxford University Press, London, 1971), p. 200

    Google Scholar 

  25. J.S. Kouvel, M.E. Fisher, Detailed magnetic behavior of nickel near its curie point. Phys. Rev. 136, A1626 (1964)

    Article  ADS  Google Scholar 

  26. D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, J.F. Mitchell, Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−xCaxMnO3. Phys. Rev. Lett. 89, 227202 (2002)

    Article  ADS  Google Scholar 

  27. Ah Dhahri, M. Jemmali, E. Dhahri, E.K. Hlil, Critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.7Ca0.2Sr0.1Mn1−xCrxO3 compounds (0 < x < 0.1). J. Alloys Compd. 631, 350–354 (2015)

    Article  Google Scholar 

  28. N. Dhahri, J. Dhahri, E.K. Hlil, E. Dhahri, Critical behavior in Co-doped manganites La0.67Pb0.33Mn1−xCoxO3 (0 ≤ x ≤ 0.08). J. Magn. Magn. Mater. 324, 806–811 (2012)

    Article  ADS  Google Scholar 

  29. Ma. Oumezzine, O. Peña, S. Kallel, S. Zemni, Critical phenomena and estimation of the spontaneous magnetization through magnetic entropy change in La0.67Ba0.33Mn0.98Ti0.02O3. J. Solid State Sci. 13, 1829–1834 (2011)

    Article  ADS  Google Scholar 

  30. A. Dhahri, J. Dhahri, E.K. Hlil, E. Dhahri, Effect of Ti-substitution on magnetic and magnetocaloric properties of La0.57Nd0.1Pb0.33MnO3. J. Alloys Compd. 530, 1–5 (2012)

    Article  Google Scholar 

  31. M. Baazaoui, S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Critical behavior near the ferromagnetic paramagnetic phase transition temperature of Pr0.67Ba0.33Mn1−xFexO3 (x = 0 and 0.05) manganite. J. Magn. Magn. Mater. 401, 323–332 (2016)

    Article  ADS  Google Scholar 

  32. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Critical behavior near the ferromagnetic paramagnetic phase transition in Sm0.55−xPrxSr0.45MnO3 compounds (0.3 ≤ x ≤ 0.4). J. Alloys Compd 648, 1043–1050 (2015)

    Article  Google Scholar 

  33. B. Widom, Degree of the critical isotherm. J. Chem. Phys. 41, 1633 (1964)

    Article  ADS  Google Scholar 

  34. A.B. Harris, Effect of random defects on the critical behaviour of Ising models. J. Phys. C Solid State Phys. 7, 1671 (1974)

    Article  ADS  Google Scholar 

  35. M.E. Fisher, S.K. Ma, B.G. Nickel, Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917 (1972)

    Article  ADS  Google Scholar 

  36. M. Smari, H. Felhi, R. Hamdi, K. Nouri, E. Dhahri, L. Bessais, Correlation between structural, magnetic and electric properties of La0.5Ca0.3Te0.2MnO3 sample synthesis by sol–gel method. Chem. Phys. Lett. 684, 72–78 (2017)

    Article  ADS  Google Scholar 

  37. H. Oesterreicher, F.T. Parker, Magnetic cooling near Curie temperatures above 300 K. J. Appl. Phys. 55, 4334 (1984)

    Article  ADS  Google Scholar 

  38. V. Franco, A. Conde, M.D. Kuz’min, J.M. Romero-Enrique, The magnetocaloric effect in materials with a second order phase transition: are T C and T peak necessarily coincident? J. Appl. Phys. 105, 07A917 (2009)

    Article  Google Scholar 

  39. A.B. Hassine, S. Hcini, A. Dhahri, M.L. Bouazizi, E.K. Hlil, M. Oumezzine, Critical behaviors near the paramagnetic-ferromagnetic phase transitions of La0.47Eu0.2Pb0.33MnO3 and La0.47Y0.2Pb0.33MnO3 perovskites. J. Mol. Struct. 1142, 102–109 (2017)

    Article  ADS  Google Scholar 

  40. M. Foldeaki, R. Chahine, B.R. Gopal, T.K. Bose, X.Y. Liu, J.A. Barclay, Effect of sample preparation on the magnetic and magnetocaloric properties of amorphous Gd70Ni30. J. Appl. Phys. 83, 2727 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafik Hamdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdi, R., Khelifi, J., Walha, I. et al. Critical behavior near the ferromagnetic–paramagnetic phase transition in La0.5Pr0.3Ba0.2Mn1−xTixO3 (x = 0.0 and 0.1). Appl. Phys. A 126, 29 (2020). https://doi.org/10.1007/s00339-019-3215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3215-3

Navigation