Journal of Electronic Materials

, Volume 45, Issue 5, pp 2341–2346 | Cite as

Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

  • Nguyen Huu Hieu
  • Nguyen Huynh Bach Son Long
  • Dang Thi Minh Kieu
  • Ly Tan Nhiem


Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.


Graphene graphene oxide poly(vinyl alcohol) nanocomposite membrane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the financial support from Ho Chi Minh City Department of Science and Technology through Contract No. 336/2013/HĐ-SKHCN.


  1. 1.
    K.S. Novoselov, V.I. Fal, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192 (2012).CrossRefGoogle Scholar
  2. 2.
    D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).CrossRefGoogle Scholar
  3. 3.
    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Prog. Mater. Sci. 56, 1178 (2011).CrossRefGoogle Scholar
  4. 4.
    C.M. Hassan and N.A. Peppas, Adv. Polym. Sci. 153, 37 (2000).CrossRefGoogle Scholar
  5. 5.
    C. Bao, Y. Guo, L. Song, and H. Yuan, J. Mater. Chem. 21, 13942 (2011).CrossRefGoogle Scholar
  6. 6.
    X. Yang, L. Li, S. Shang, and X.-M. Tao, Polymer 51, 3431 (2010).CrossRefGoogle Scholar
  7. 7.
    H.-D. Huang, P.-G. Ren, J. Chen, W.-Q. Zhang, X. Ji, and Z.-M. Li, J. Membr. Sci. 409, 156 (2012).CrossRefGoogle Scholar
  8. 8.
    K.J. Ramalingam, N.R. Dhineshbabu, S.R. Srither, B. Saravanakumar, R. Yuvakkumar, and V. Rajendran, Synth. Met. 191, 113 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Han, J. Yun, H.-I. Kim, and Y.-S. Lee, J. Ind. Eng. Chem. 18, 752 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Fahmy, M.A. Abu-Saied, E.A. Kamoun, H.F. Khalil, M. Elsayed Youssef, A.M. Attia, and F.A. Esmail, J. Adv. Chem. 11, 3426 (2015).Google Scholar
  11. 11.
    N.-W. Pu, C.-A. Wang, Y.-M. Liu, Y. Sung, D.-S. Wang, and M.-D. Ger, J. Taiwan Inst. Chem. Eng. 43, 140 (2012).CrossRefGoogle Scholar
  12. 12.
    Y. Jin, M. Jia, M. Zhang, and Q. Wen, Appl. Surf. Sci. 264, 787 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Ammar, A.M. Al-Enizi, M.A. AlMaadeed, and A. Karim, Arab. J. Chem. (2015).Google Scholar
  14. 14.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).CrossRefGoogle Scholar
  15. 15.
    V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, and A. Buasri, Adv. Mater. Sci. Eng. 2013 (2013).Google Scholar
  16. 16.
    G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K.M. Abramski, Opt. Express 20, 19463 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, J. Chem. Commun. 46, 1112 (2010).CrossRefGoogle Scholar
  18. 18.
    T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee, Progr. Polym. Sci. 35, 1350 (2010).CrossRefGoogle Scholar
  19. 19.
    T. Zhou, F. Chen, C. Tang, H.-W. Bai, Q. Zhang, H. Deng, and Q. Fu, Compos. Sci. Technol. 71, 1266 (2010).CrossRefGoogle Scholar
  20. 20.
    J. Chen, J. Huang, J. Li, X. Zhan, and C. Chen, Desalination 256, 148 (2010).CrossRefGoogle Scholar
  21. 21.
    Q. Kang, J. Huybrechts, B. Van der Bruggen, J. Baeyens, T. Tan, and R. Dewil, Sep. Purif. Technol. 136, 144 (2014).CrossRefGoogle Scholar
  22. 22.
    Y. Li, R. Umer, Y.A. Samad, L. Zheng, and K. Liao, Carbon 55, 321 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Nguyen Huu Hieu
    • 1
  • Nguyen Huynh Bach Son Long
    • 2
  • Dang Thi Minh Kieu
    • 1
  • Ly Tan Nhiem
    • 1
  1. 1.Faculty of Chemical EngineeringHo Chi Minh City University of TechnologyHo Chi Minh CityVietnam
  2. 2.Faculty of Chemical and Environmental EngineeringLac Hong UniversityBien Hoa CityVietnam

Personalised recommendations