Skip to main content
Log in

Inhomogeneities and Effective Mass in Doped Mg2Si

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Magnesium silicide (Mg2Si)-based materials are promising candidates as thermoelectric components for mid-temperature range (500–900 K) energy conversion. Many different approaches for determining the parabolicity of the conduction band have been suggested in the literature, while the values of the effective mass m* dL reported, lie between 0.46 and 1.1 m0. The aim of this work is to contribute in elucidating the discrepancy observed in the effective mass values of the lower conduction band of highly doped Mg2Si and examine whether this discrepancy could be attributed to the method of determination or to the sample’s characteristics. We present the results of effective mass calculations at room temperature (RT) by applying different experimental methods and models (parabolic and non-parabolic) in two different groups of samples; one yielding profound inhomogeneities (Sb-doped) and one yielding homogeneous (Bi-doped) samples. Concluding this analysis, it seems that the lower conduction band of Mg2Si is more likely described as non-parabolic. Comparing the two groups of samples, our analysis indicated that the effective mass may be significantly underestimated for samples with dopant and content-modulated composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A. Yu Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  2. H.J. Lee, Y.R. Cho, and I.-H. Kim, J. Ceram. Process. Res 12, 16 (2011).

    Google Scholar 

  3. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).

    Article  Google Scholar 

  4. M. Ioannou, G.S. Polymeris, E. Hatzikraniotis, A.U. Khan, K.M. Paraskevopoulos, and Th. Kyratsi, J. Electron. Mater. 42, 1827 (2013).

    Article  Google Scholar 

  5. M. Ioannou, G.S. Polymeris, E. Hatzikraniotis, K.M. Paraskevopoulos, and Th. Kyratsi, J. Phys. Chem. Solids 75, 984 (2014).

    Article  Google Scholar 

  6. J.-I. Tani and H. Kido, Physica B 364, 218 (2005).

    Article  Google Scholar 

  7. P. Koenig, D.W. Lynch, and G.C. Danielson, J. Phys. Chem. Solids 20, 122 (1961).

    Article  Google Scholar 

  8. R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1909 (1958).

    Article  Google Scholar 

  9. M.Y. Au-Yang and M.L. Cohen, Phys. Rev. 178, 1358 (1969).

    Article  Google Scholar 

  10. C.B. Vining and D.M. Rowe, Handbook of Thermoelectrics (New York: CRC, 1995).

    Google Scholar 

  11. F. Aymerich and G. Mula, Phys. Status Solidi B 42, 697 (1970).

    Article  Google Scholar 

  12. N. Satyala and D. Vashaee, J. Electron. Mater. 41, 1785 (2012).

    Article  Google Scholar 

  13. D. Stathokostopoulos, E.C. Stefanaki, M. Ioannou, G.S. Polymeris, D. Chaliampalias, E. Pavlidou, Th. Kyratsi, K.M. Paraskevopoulos, G. Vourlias, and E. Hatzikraniotis, Phys. Status Solidi A 211, 1308 (2014).

    Article  Google Scholar 

  14. V.K. Zaitsev, E.N. Nikitin, and E.N. Tkalenko, Sov. Phys. Solid State 11, 3000 (1969).

    Google Scholar 

  15. S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, and J.P. Fleurial, J. Mater. Chem. 21, 12259 (2011).

    Article  Google Scholar 

  16. M.W. Heller and G.C. Danielson, J. Phys. Chem. Solids 23, 601 (1962).

    Article  Google Scholar 

  17. G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 235204 (2007).

    Article  Google Scholar 

  18. K. Kutorasinski, B. Wiendlocha, J. Tobola, and S. Kaprzyk, Phys. Rev. B 89, 115205 (2014).

    Article  Google Scholar 

  19. L.-D. Zhao, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 7, 251 (2014).

    Article  Google Scholar 

  20. G.S. Polymeris, E. Hatzikraniotis, E.C. Stefanaki, E. Pavlidou, T. Kyratsi, K.M. Paraskevopoulos, and M.G. Kanatzidis, MRS Online Proceedings Library, 1543, (2013). Doi: 10.1557/opl.2013.939

  21. E.C. Stefanaki, G.S. Polymeris, P.M. Nikolic, Ch. Papageorgiou, E. Pavlidou, E. Hatzikraniotis, Th. Kyratsi, and K.M. Paraskevopoulos, J. Electron. Mater. 43, 3785 (2014).

    Article  Google Scholar 

  22. W. Liu, X. Tang, H. Li, K. Yin, J. Sharp, X. Zhou, and C. Uher, J. Mater. Chem. 22, 13653 (2012).

    Article  Google Scholar 

  23. A.U. Khan, N.V. Vlachos, E. Hatzikraniotis, G.S. Polymeris, Ch.B Lioutas, E.C. Stefanaki, K.M. Paraskevopoulos, I. Giapintzakis, and Th. Kyratsi, Acta Mater. 77, 43 (2014).

    Article  Google Scholar 

  24. A.F. May, D.J. Singh, and G.J. Snyder, Phys. Rev. B 79, 153101 (2009).

    Article  Google Scholar 

  25. A.F. May, E.S. Toberer, A. Saramat, and G.J. Snyder, Phys. Rev. B 80, 125205 (2009).

    Article  Google Scholar 

  26. W. Liu, H. Chi, H. Sun, Q. Zhang, K. Yin, X. Tang, Q. Zhang, and C. Uher, Phys. Chem. Chem. Phys. 16, 6893 (2014).

    Article  Google Scholar 

  27. E. Kane, J. Phys. Chem. Solids 1, 249 (1957).

    Article  Google Scholar 

  28. I.U.I. Ravich, B.A. Efimova, and I.A. Smirnov, Semiconducting Lead Chalcogenides (New York: Plenum Press, 1970).

    Book  Google Scholar 

  29. I.A. Smirnov and Yu.I. Ravich, Sov. Phys. Semicond. 1, 739 (1967).

    Google Scholar 

  30. M.K. Zhitinskaya, V.I. Kaidanov, and I.A. Chernik, Sov. Phys. Solid State 8, 246 (1966).

    Google Scholar 

  31. H. Wang, Y. Pei, A.D. LaLonde, and G.J. Snyder, Proc. Natl. Acad. Sci. 109, 9705 (2012).

    Article  Google Scholar 

  32. J.J. Martin, J. Phys. Chem. Solids 33, 1139 (1972).

    Article  Google Scholar 

  33. M.I. Baleva, M.H. Maksimov, and M.S. Sendova, J. Phys. C 20, 941 (1987).

    Article  Google Scholar 

  34. V.K. Zaitsev, M.I. Fedorov, A.T. Burkov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, S.V. Ordin, S. Sano, and M.V. Vedernikov, Proceedings ICT '02. Twenty-First International Conference on Thermoelectrics, 151 (2002)

  35. S. Sharma and S.K. Pandey, Comput. Mater. Sci. 85, 340 (2014).

    Article  Google Scholar 

  36. Y. Meijun, S. Qiang, T. Xinfeng, and H. Lianmeng, J. Chin. Ceram. Soc. 39, 1603 (2011).

    Google Scholar 

  37. J. Androulakis, D.Y. Chung, X. Su, L. Zhang, C. Uher, T. Hasapis, E. Hatzikraniotis, K.M. Paraskevopoulos, and M.G. Kanatzidis, Phys. Rev. B 84, 155207 (2011).

    Article  Google Scholar 

  38. Z. Du, J. Cui, T. Zhu, and X. Zhao, Phys. Status Solidi A 210, 2359 (2013).

    Article  Google Scholar 

  39. Q. Zhang, H. Yin, X.B. Zhao, J. He, X.H. Ji, T.J. Zhu, and T.M. Tritt, Phys. Status Solidi A 205, 1657 (2008).

    Article  Google Scholar 

  40. W. Zawadzki, Adv. Phys. 23, 435 (1974).

    Article  Google Scholar 

  41. R.F. Blunt, H.P.R. Frederikse, and W.R. Hosler, Phys. Rev. 100, 663 (1955).

    Article  Google Scholar 

  42. R.J. Labotz and D.R. Mason, J. Electrochem. Soc. 110, 121 (1963).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ThermoMag Project, which is co-funded by the European Commission in the 7th Framework Programme (contract NMP4-SL-2011-263207), by the European Space Agency and by the individual partner organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Stefanaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanaki, E.C., Polymeris, G.S., Ioannou, M. et al. Inhomogeneities and Effective Mass in Doped Mg2Si. J. Electron. Mater. 45, 1900–1906 (2016). https://doi.org/10.1007/s11664-015-4277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4277-4

Keywords

Navigation