Skip to main content
Log in

Ab Initio Investigation of the Structural, Electronic and Optical Properties of Cubic GaAs1−x P x Ternary Alloys Under Hydrostatic Pressure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, electronic and optical properties of the GaAs1−x P x ternary alloys together with their binary GaP and GaAs compounds were investigated in the zinc-blende (ZB) phase using the density functional theory. The lattice constant of the GaAs compound decreases while its bulk modulus increases when the doping concentration of the P dopant is increased. In addition, both parameters (lattice constant and bulk modulus) show small deviations from the linear concentration dependence. The energy band gap of the GaAs compound is of the direct nature, which increases with the increase in the P dopant concentration, whereas at higher P dopant concentration, the band gap shifts from direct to indirect character. On the other hand, the hydrostatic pressure has a significant effect on the band structure of the investigated compounds where the binary GaAs compound changes from a direct band gap semiconductor to an indirect band gap semiconductor at P ≥ 5 GPa. Furthermore, the pressure-dependence of the optical properties of the GaAs, GaP and GaAs0.75P0.25 alloy were also investigated, where the calculated zero frequency refractive index and the dielectric function are also compared with the experimental results as well as with different empirical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Madelung (ed.), Landolt-Börnstein, New Series, Group I.I.I., 17a, (Berlin: Springer, 1982).

  2. X. Jin, S. Matsuba, Y. Honda, T. Miyajima, M. Yamamoto, T. Utiyama, and Y. Takeda, Ultramicroscopy 130, 44 (2013).

    Article  Google Scholar 

  3. X. Jin, Y. Maeda, T. Sasaki, S. Arai, S. Fuchi, T. Ujihara, and Y. Takeda, J. Phys: Conf. Ser. 298, 1 (2011).

    Google Scholar 

  4. X. Jin, Y. Maeda, T. Saka, M. Tanioku, S. Fuchi, T. Ujihara, Y. Takeda, N. Yamamoto, Y. Nakagawa, A. Mano, S. Okumi, M. Yamamoto, T. Nakanishi, H. Horinaka, T. Kato, T. Yasue, and T. Koshikawa, J. Cryst. Growth 310, 5040 (2008).

    Article  Google Scholar 

  5. X. Jin, S. Fuchi, and Y. Takeda, J. Cryst. Growth 370, 204–205 (2013).

    Article  Google Scholar 

  6. M. Hayashida, R. Mirzoyan, and M. Teshima, Nucl. Instrum. Methods Phys. Res. A 567, 180 (2006).

    Article  Google Scholar 

  7. M. Hayashida, J. Ninkovic, J. Hose, C.C. Hsu, R. Mirzoyan, and M. Teshima, Nucl. Instrum. Methods Phys. Res. A 572, 456 (2007).

    Article  Google Scholar 

  8. T.Y. Saito, E. Bernardini, D. Bose, M.V. Fonseca, E. Lorenz, K. Mannheim, R. Mirzoyan, R. Orito, T. Schweizer, M. Shayduk, and M. Teshima, Nucl. Instrum. Methods Phys. Res. A 610, 258 (2009).

    Article  Google Scholar 

  9. D.S. Abramkin, M.A. Putyato, S.A. Budennyy, A.K. Gutakovskii, B.R. Semyagin, V.V. Preobrazhenskii, O.F. Kolomys, V.V. Strelchuk, and T.S. Shamirzaev, J. Appl. Phys. 112, 1 (2012).

    Article  Google Scholar 

  10. K. Watanabe, Y. Wang, H. Sodabanlu, M. Sugiyama, and Y. Nakano, J. Cryst. Growth 401, 713 (2014).

    Article  Google Scholar 

  11. M. Othman, E. Kasap, and N. Korozlu, J. Alloys. Compd. 496, 230 (2010).

    Article  Google Scholar 

  12. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5844 (2001).

    Article  Google Scholar 

  13. A.R. Degheidy and E.B. Elkenany, Mater. Chem. Phys. 143, 2 (2013).

    Article  Google Scholar 

  14. A. Alahmatry, N. Bouarissa, and A. Kamli, Phys. B 403, 1990 (2008).

    Article  Google Scholar 

  15. M. Driz, N. Badi, B. Soudini, N. Amrane, H. Abid, N. Bouarissa, B. Khelifa, and H. Aourag, Comput. Mater. Sci. 2, 289 (1994).

    Article  Google Scholar 

  16. B. Bouhafs, H. Aourag, M. Ferhat, A. Zaoui, and M. Certier, J. Appl. Phys. 82, 4923 (1997).

    Article  Google Scholar 

  17. P. Ziesche, S. Kurth, and J.P. Perdew, Comput. Mater. Sci. 11, 122 (1998).

    Article  Google Scholar 

  18. K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 266 (2003).

    Article  Google Scholar 

  19. P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Comput. Phys. Commun. 59, 403 (1990).

    Article  Google Scholar 

  20. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An augmented plane wave plus local orbital program for calculating crystal properties (Vienna University of Technology: Vienna, 2001).

  21. K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, and Y. Lei, J. Appl. Phys. 113, 014304 (2013).

    Article  Google Scholar 

  22. K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, J. Appl. Phys. 114, 034901 (2013).

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  24. Z. Wu and R.E. Cohen, Phys. Rev. B. 73, 1 (2006).

    Google Scholar 

  25. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 1 (2009).

    Google Scholar 

  26. D. Koller, F. Tran, and B. Plaha, Phys. Rev. B 85, 1–8 (2012).

    Google Scholar 

  27. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1947).

    Article  Google Scholar 

  28. K. Nakamura, T. Hashimoto, T. Yasui, M. Yoshimoto, and H. Matsunami, J. Appl. Phys. 40, 1377 (2001).

    Article  Google Scholar 

  29. M. Merabet, S. Benalia, D. Rached, R. Khenata, A. Bouhemadou, S. Bin Omran, A.H. Reshak, and M. Rabah, Superlattices Microstruct. 49, 135 (2011).

    Article  Google Scholar 

  30. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors, (Wiley: New York, 2009), p 17.

  31. L. Vegard, Z. Phys. 5, 17 (1921).

    Article  Google Scholar 

  32. D.S. Jiang, L.F. Bian, X.G. Liang, K. Chang, B.Q. Sun, S. Johnson, and Y.H. Zhang, J. Cryst. Growth 268, 339 (2004).

    Google Scholar 

  33. M. Linnik and A. Christou, Phys. B 318, 143 (2002).

    Article  Google Scholar 

  34. M.P.C.M. Krijn, Semicond. Sci. Technol. 6, 29 (1991).

    Article  Google Scholar 

  35. C. Ambrosch-Draxl and J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006).

    Article  Google Scholar 

  36. N.M. Ravindra, S. Auluck, and V.K. Srivastava, Phys. Status Solidi B 93, K155 (1979).

    Article  Google Scholar 

  37. P.J.L. Herve and L.K.J. Vandamme, Infrared Phys. Technol. 35, 611 (1994).

    Article  Google Scholar 

  38. R.R. Reddy and Y. Nazeer, Ahammed, K. Rama Gopal, D.V. Raghuram. Opt. Mater. 10, 98 (1998).

    Article  Google Scholar 

  39. S.S. Li, Semiconductor Physical Electronics (New York: Springer Science, 2006), p. 253.

  40. M. Jaros, Phys. Rev. B 37, 7112 (1988).

    Article  Google Scholar 

  41. S. Adachi, Properties of Group- IV, III -V and II-VI Semiconductors (New York: Wiley, 2005) (Chapter 2).

  42. A.R. Degheidy, A.S. Elabsy, and E.B. Elkenany, Superlattices Microstruct. 52, 340 (2012).

    Article  Google Scholar 

  43. J. Łagowski, A. Iller, and A. Šwiatek, Surf. Sci. 49, 8 (1975).

    Google Scholar 

  44. H. Abid, N. Badi, B. Soudini, N. Amrane, M. Driz, M. Hammadi, H. Aourag, and B. Khelifa, Mater. Chem. Phys. 38, 165 (1994).

    Article  Google Scholar 

  45. D.E. Aspnes and A.A. Studna, Phys. Rev. B 27, 997 (1983).

    Article  Google Scholar 

  46. Y. Al-Douri and A.H. Reshak, Appl. Phys. A 104, 1164 (2011).

    Article  Google Scholar 

  47. J.C. Phillips, Bonds and Bands in Semiconductors, (New York: Academic, 1973).

Download references

Acknowledgements

The authors (Khenata and Bin-Omran) acknowledge the financial support provided by the Deanship of Scientific Research at King Saud University for funding this work through research group project No: RPG-VPP-088.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Abdiche or R. Khenata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, R., Abdiche, A., Abbar, B. et al. Ab Initio Investigation of the Structural, Electronic and Optical Properties of Cubic GaAs1−x P x Ternary Alloys Under Hydrostatic Pressure. J. Electron. Mater. 44, 4684–4699 (2015). https://doi.org/10.1007/s11664-015-4048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4048-2

Keywords

Navigation