Skip to main content
Log in

Bipolar Switching Behavior of ZnO x Thin Films Deposited by Metalorganic Chemical Vapor Deposition at Various Growth Temperatures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The bipolar resistive switching behaviors of ZnO films grown at various temperatures by metalorganic chemical vapor deposition have been investigated. The ZnO films were grown on Pt/Ti/SiO2/Si(100) substrate, and the ZnO growth temperature was varied from 300°C to 500°C in steps of 100°C. Rutherford backscattering spectroscopy analysis results showed that the chemical compositions of the ZnO films were oxygen-poor Zn1O0.9 at 300°C, stoichiometric Zn1O1 at 400°C, and oxygen-rich Zn1O1.3 at 500°C. Resistive switching properties were observed in the ZnO films grown at 300°C and 400°C. In contrast, high current, without switching properties, was found in the ZnO film grown at 500°C. The ZnO film grown at 500°C had higher concentration of both nonlattice oxygen (4.95%) and oxygen vacancy (3.23%) than those grown at 300°C or 400°C. The resistive switching behaviors of ZnO films are related to the ZnO growth temperature via the relative amount of oxygen vacancies in the film. Pt/ZnO/Pt devices showed asymmetric resistive switching with narrow dispersion of switching voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.I. Meijer, Science 319, 1625 (2008).

    Article  Google Scholar 

  2. S.Q. Liu, N.J. Wu, and A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000).

    Article  Google Scholar 

  3. S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, and B.H. Park, Appl. Phys. Lett. 85, 5655 (2004).

    Article  Google Scholar 

  4. S. Kim and Y.K. Choi, IEEE Trans. Electron Devices 56, 3049 (2009).

    Article  Google Scholar 

  5. Y.H. Do, J.S. Kwak, Y.C. Bae, K. Jung, H. Im, and J.P. Hong, Appl. Phys. Lett. 95, 093507 (2009).

    Article  Google Scholar 

  6. S.P. Heluani, G. Braunstein, M. Villafuerte, G. Simonelli, and S. Duhalde, Thin Solid Films 515, 2379 (2006).

    Article  Google Scholar 

  7. N. Xu, L.F. Liu, X. Sun, X.Y. Liu, D.D. Han, Y. Wang, R.Q. Han, J.F. Kang, and B. Yu, Appl. Phys. Lett. 92, 232112 (2008).

    Article  Google Scholar 

  8. N. Xu, L.F. Liu, X. Sun, C. Chen, Y. Wang, D.D. Han, X.Y. Liu, R.Q. Han, J.F. Kang, and B. Yu, Semicond. Sci. Technol. 23, 075019 (2008).

    Article  Google Scholar 

  9. A. Sawa, Mater. Today 11, 28 (2008).

    Article  Google Scholar 

  10. S.H. Jo, K.H. Kim, and W. Lu, Nano Lett. 9, 870 (2009).

    Article  Google Scholar 

  11. F. Pan, C. Chen, Z.S. Wang, Y.C. Yang, J. Yang, and F. Zeng, Prog. Nat. Sci. 20, 1 (2010).

    Article  Google Scholar 

  12. J.J. Yang, M.D. Pickett, X.M. Li, D.A.A. Ohlberg, D.R. Stewart, and R.S. Williams, Nat. Nanotechnol. 3, 429 (2008).

    Article  Google Scholar 

  13. Y.R. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, and C.J. Youn, Appl. Phys. Lett. 88, 241108 (2006).

    Article  Google Scholar 

  14. Y.K. Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu, and I.C. Chen, Adv. Funct. Mater. 13, 811 (2003).

    Article  Google Scholar 

  15. M.S. Arnold, P. Avouris, Z.W. Pan, and Z.L. Wang, J. Phys. Chem. B 107, 659 (2003).

    Article  Google Scholar 

  16. W.Q. Yang, J. Chen, G. Zhu, X.N. Wen, P. Bai, Y.J. Su, Y. Lin, and Z.L. Wang, Nano Res. 6, 880 (2013).

    Article  Google Scholar 

  17. Z.L. Wang and J.H. Song, Science 312, 242 (2006).

    Article  Google Scholar 

  18. Q. Yang, Y. Liu, C.F. Pan, J. Chen, X.N. Wen, and Z.L. Wang, Nano Lett. 13, 607 (2013).

    Article  Google Scholar 

  19. R.M. Yu, C.F. Pan, J. Chen, G. Zhu, and Z.L. Wang, Adv. Funct. Mater. 23, 5868 (2013).

    Article  Google Scholar 

  20. W.Y. Chang, H.W. Huang, W.T. Wang, C.H. Hou, Y.L. Chueh, and J.H. He, J. Electrochem. Soc. 159, 29 (2012).

    Article  Google Scholar 

  21. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, and P.D. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).

    Article  Google Scholar 

  22. J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, Appl. Surf. Sci. 229, 311 (2004).

    Article  Google Scholar 

  23. G. Schön, J. Electron Spectrosc. Relat. Phenom. 2, 75 (1973).

    Article  Google Scholar 

  24. P.T. Hsieh, Y.C. Chen, K.S. Kao, and C.M. Wang, Appl. Phys. A 90, 317 (2008).

    Article  Google Scholar 

  25. D.S. Park, Y.J. Tak, J.Y. Kim, and K.J. Yong, Surf. Rev. Lett. 14, 1061 (2007).

    Article  Google Scholar 

  26. M. Hecq, A. Hecq, J.P. Delrue, and T. Robert, J. Less Common. Met. 64, 25 (1979).

    Article  Google Scholar 

  27. Y. Abe, H. Yanagisawa, and K. Sasaki, Jpn. J. Appl. Phys. 37, 4482 (1998).

    Article  Google Scholar 

  28. T.G. Seong, M.R. Joung, J.W. Sun, M.K. Yang, J.K. Lee, J.W. Moon, J. Roh, and S. Nahm, Jpn. J. Appl. Phys. 51, 041102 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjin Byun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, S., Kim, DS., Jung, S. et al. Bipolar Switching Behavior of ZnO x Thin Films Deposited by Metalorganic Chemical Vapor Deposition at Various Growth Temperatures. J. Electron. Mater. 44, 4175–4181 (2015). https://doi.org/10.1007/s11664-015-3935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3935-x

Keywords

Navigation