Skip to main content
Log in

The Role of Work Function and Band Gap in Resistive Switching Behaviour of ZnTe Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Resistive switching behavior by engineering the electrode work function and band gap of ZnTe thin films is demonstrated. The device structures Au/ZnTe/Au, Au/ZnTe/Ag, Al/ZnTe/Ag and Pt/ZnTe/Ag were fabricated. ZnTe was deposited by thermal evaporation and the stoichiometry and band gap were controlled by varying the source–substrate distance. Band gap could be varied between 1.0 eV to approximately 4.0 eV with the larger band gap being attributed to the partial oxidation of ZnTe. The transport characteristics reveal that the low-resistance state is ohmic in nature which makes a transition to Poole–Frenkel defect-mediated conductivity in the high-resistance states. The highest R off-to-R on ratio achieved is 109. Interestingly, depending on stoichiometry, both unipolar and bipolar switching can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).

    Article  Google Scholar 

  2. A. Sawa, Mater. Today 11, 28 (2008).

    Article  Google Scholar 

  3. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, and C.S. Hwang, Rep. Prog. Phys. 75, 076502 (2012).

    Article  Google Scholar 

  4. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    Article  Google Scholar 

  5. L.D. Varma Sangani, C. Ravi Kumar, and M. Ghanashyam Krishna, J. Electron. Mater. 45, 32 (2016).

    Google Scholar 

  6. L.D. Varma Sangani, K. Vijaya Sri, M. Ahamad Mohiddon, and M. Ghanashyam Krishna, RSC Adv. 5, 67493 (2015).

    Article  Google Scholar 

  7. C.B. Lee, B.S. Kang, A. Benayad, M.J. Lee, S.-E. Ahn, and K.H. Kim, Appl. Phys. Lett. 9, 04115 (2008).

    Google Scholar 

  8. S.R. Lee, H.M. Kim, J.H. Bak, Y.D. Park, K. Char, and H.W. Park, Jpn. J. Appl. Phys. 49, 031102 (2010).

    Article  Google Scholar 

  9. F. Zhuge, K. Li, B. Fu, H. Zhang, J. Li, H. Chen, L. Liang, J. Gao, H. Cao, Z. Liu, and H. Luo, AIP Adv. 5, 057125 (2015).

    Article  Google Scholar 

  10. G. Palma, E. Vianello, G. Molas, C. Cagli, F. Longnos, J. Guy, M. Reyboz, C. Carabasse, M. Bernard, and F. Dahmani, Jpn. J. Appl. Phys. 52, 04CD02 (2013).

    Article  Google Scholar 

  11. D.J. Chadi, Ann. Rev. Mater. Sci. 24, 45 (1994).

    Article  Google Scholar 

  12. H. Bellakhder, A. Outzourhit, and E.L. Ameziane, Thin Solid Films 382, 30 (2001).

    Article  Google Scholar 

  13. M.S.R.N. Kiran, S. Kshirsagar, M. Ghanashyam Krishna, and S.P. Tewari, Eur. Phys. J. Appl. Phys. 51, 1050 (2010).

    Article  Google Scholar 

  14. S. Kshirsagar, M. Ghanashyam Krishna, and S.P. Tewari, AIP Conf. Proc. 1349, 1285 (2011).

    Article  Google Scholar 

  15. S. Kshirsagar, M. Ghanashyam Krishna, and S.P. Tewari, Mater. Sci. Semicond. Proces. 16, 1002 (2012).

    Article  Google Scholar 

  16. E. Constable␣and R.A. Lewis, J. Appl. Phys. 112, 063104 (2012).

    Article  Google Scholar 

  17. T. Ota and K. Takahashi, Solid State Electron. 16, 1089 (1973).

    Article  Google Scholar 

  18. M. Burgelman, Electrocomp. Sci. Technol. 7, 93 (1980).

    Article  Google Scholar 

  19. V. Ananthan and P.B. Phatak, US Patent 20140264241, A1, (2013).

  20. K.U.M. Kumar, R. Brahma, M. Ghanashyam Krishna, A.K. Bhatnagar, and G. Dalba, J. Phys.: Condens. Matter 19, 496208 (2007).

    Google Scholar 

  21. W.D. Baker and A.G. Milnes, J. Appl. Phys. 43, 5152 (1972).

    Article  Google Scholar 

  22. H.L. Skriver and N.M. Rosengaard, Phys. Rev. B 46, 7157 (1992).

    Article  Google Scholar 

  23. P. Jakubas and P. Bogusławski, Phys. Rev. B 77, 214104 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The first and second authors acknowledge the Government of India for fellowships. Facilities provided by the Centre for Nanotechnology and School of Physics, University of Hyderabad are acknowledged. The reviewer is thanked for very useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghanashyam Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowtu, S., Sangani, L.D.V. & Krishna, M.G. The Role of Work Function and Band Gap in Resistive Switching Behaviour of ZnTe Thin Films. J. Electron. Mater. 47, 1620–1629 (2018). https://doi.org/10.1007/s11664-017-5979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5979-6

Keywords

Navigation