Skip to main content
Log in

A Metal Bump Bonding Method Using Ag Nanoparticles as Intermediate Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The future development of low-temperature and low-pressure bonding technology is necessary for fine-pitch bump application. We propose a bump structure using Ag nanoparticles as an intermediate layer coated on a fine-pitch Cu pillar bump. The intermediate layer is prepared using an efficient and cost-saving squeegee-coating method followed by a 100°C baking process. This bump structure can be easily flattened before the bonding process, and the low-temperature sinterability of the nanoparticles is retained. The bonding experiment was successfully performed at 250°C and 39.8 MPa and the bonding strength was comparable to that achieved via other bonding technology utilizing metal particles or porous material as bump materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Al-Sarawi, D. Abbott, and P.D. Franzon, IEEE Trans. Compon. Packag. Manuf. Technol. B 21, 2 (1998).

    Article  Google Scholar 

  2. K. Takahashi, H. Terao, Y. Tomita, Y. Yamaji, M. Hoshino, T. Sato, T. Morifuji, M. Sunohara, and M. Bonkohara, Jpn. J. Appl. Phys. 40, 3032 (2001).

    Article  Google Scholar 

  3. K.F. Harsh, W. Zhang, V.M. Bright, and Y.C. Lee, 12th IEEE International Conference on Micro Electro Mechanical Systems, 1999, pp. 273–278.

  4. A.W. Topol, D.C. La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U. Singco, A.M. Young, K.W. Guarini, and M. Leong, IBM J. Res. Dev. 50, 491 (2006).

    Article  Google Scholar 

  5. J.N. Burghartz, W. Appel, C. Harendt, H. Rempp, H. Richter, and M. Zimmermann, 39th Proceedings of the European Solid-State Device Research Conference, 2009, pp. 29–36.

  6. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, 1997 Edition.

  7. M. Gerber, C. Beddingfield, S. O’Connor, M. Yoo, M. Lee, D. Kang, S. Park, C. Zwenger, R. Darveaux, R. Lanzone, and K. Park, 61st IEEE Electronic Components and Technology Conference (2011), pp. 612–618.

  8. K. Tanida, M. Umemoto, T. Morifuji, R. Kajiwara, T. Ando, Y. Tomita, N. Tanaka, and K. Takahashi, Jpn. J. Appl. Phys. 42, 6390 (2003).

    Article  Google Scholar 

  9. Y. Takahashi and M. Maeda, Trans. JWRI 40, 1 (2011).

    Google Scholar 

  10. J.W. Jang, L. Li, P. Bowles, R. Bonda, and D.R. Frear, Microelectron. Reliab. 52, 455 (2012).

    Article  Google Scholar 

  11. C.A. Lu, P. Lin, H.C. Lin, and S.F. Wang, Jpn. J. Appl. Phys. 46, 4179 (2007).

    Article  Google Scholar 

  12. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).

    Article  Google Scholar 

  13. R. Agarwal, W. Zhang, P. Limaye, R. Labie, B. Dimcic, A. Phommahaxay, and P. Soussan, 60th IEEE Electronic Components and Technology Conference (2010), pp. 858–863.

  14. H. Alarifi, A. Hu, M. Yavuz, and Y.N. Zhou, J. Electron. Mater. 40, 1394 (2011).

    Article  Google Scholar 

  15. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).

    Article  Google Scholar 

  16. G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, and Y. Zhou, Open Surf. Sci. J. 3, 70 (2011).

    Article  Google Scholar 

  17. S. Soichi and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 923 (2013).

    Article  Google Scholar 

  18. M. Kuramoto, S. Ogawa, M. Niwa, K.S. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 653 (2011).

    Article  Google Scholar 

  19. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010).

    Article  Google Scholar 

  20. D. Wakuda, K.S. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 33, 437 (2010).

    Article  Google Scholar 

  21. D. Wakuda, M. Hatamura, and K. Suganuma, Chem. Phys. Lett. 441, 305 (2007).

    Article  Google Scholar 

  22. J. Perelaer, R. Jani, M. Grouchko, A. Kamyshny, S. Magdassi, and U.S. Schubert, Adv. Mater. (Weinheim, Ger.) 24, 3993 (2012).

    Article  Google Scholar 

  23. H. Mimatsu, J. Mizuno, T. Kasahara, M. Saito, S. Shoji, and H. Nishikawa, 27th IEEE International Conference on Micro Electronic Mechanical Systems (2014), pp. 1131–1134.

  24. L. Xu, J.H. Pang, and F. Che, J. Electron. Mater. 37, 880 (2008).

    Article  Google Scholar 

  25. M. Kim and H. Nishikawa, 4th IEEE Workshop Low Temperature Bonding 3D Integration (2014), p. 42.

Download references

Acknowledgements

This work has been partly supported by the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT), a Grant-in-Aid for Scientific Basic Research (S) No. 23226010, the Specially Promoted Research “Establishment of Electrochemical Device Engineering”, and a Grant-in-Aid for Cooperative Research Project Nationwide Joint-Use Research Institute on Advanced Materials Development and Integration of Novel Structured Metallic and Inorganic Materials from MEXT. This work is also partly supported by JSPS KAKENHI Grant Number 25289241. The authors also wish to acknowledge the support provided by the MEXT Nanotechnology Platform Support Project of Waseda University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Mizuno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W., Nimura, M., Kasahara, T. et al. A Metal Bump Bonding Method Using Ag Nanoparticles as Intermediate Layer. J. Electron. Mater. 44, 4646–4652 (2015). https://doi.org/10.1007/s11664-015-3932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3932-0

Keywords

Navigation