Skip to main content
Log in

Advantages of Blue InGaN Light-Emitting Diodes with a Mix of AlGaN and InGaN Quantum Barriers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a new design of quantum barriers has been investigated numerically with the purpose of improving the optical performance of blue InGaN light-emitting diodes (LEDs). Through analysis of energy band diagrams, carrier concentrations, carrier current densities, Auger recombination rates, and radiative recombination rates, we obtain simulation results showing that the proposed structure with a mix of AlGaN and InGaN quantum barriers can significantly improve the light output power and internal quantum efficiency (IQE), being mainly attributed to successful enhancement of the hole injection efficiency and suppression of the electron leakage current. Moreover, the efficiency droop of the LEDs is markedly improved by using the newly designed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.B. Sebitosi and P. Pillay, IEEE Trans. Energy Convers. 22, 674 (2007).

    Article  Google Scholar 

  2. M. Koike, N. Shibata, H. Kato, and Y. Takahashi, IEEE J. Sel. Topics Quant. Electron. 8, 271 (2002).

    Article  Google Scholar 

  3. T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).

    Article  Google Scholar 

  4. C.H. Chan, IEEE 2005 6th International Conference on Electronic Packaging Technology, Vol. 13 (2005).

  5. S. Pimputkar, J.-S. Speck, S.-P. DenBaars, and S. Nakamura, Nat. Photonics 3, 180 (2009).

    Article  Google Scholar 

  6. Y. Yang, X.A. Cao, and C. Yan, IEEE Trans. Electron Devices 55, 1771 (2008).

    Article  Google Scholar 

  7. E.F. Schubert and J.K. Kim, Science 308, 1274 (2005).

    Article  Google Scholar 

  8. M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507-1 (2007).

    Google Scholar 

  9. C.H. Wang, J.R. Chen, C.H. Chiu, H.C. Kuo, Y.L. Li, T.C. Lu, and S.C. Wang, IEEE Photon. Technol. Lett. 22, 236 (2010).

    Article  Google Scholar 

  10. M.H. Crawford, IEEE J. Sel. Top Quantum Electron. 15, 1028 (2009).

    Article  Google Scholar 

  11. N. Tansu, et al., IEEE Photonics J. 2, 241 (2010).

    Article  Google Scholar 

  12. D. Feezell, et al., J. Disp. Tech. 9, 190 (2013).

    Article  Google Scholar 

  13. R.A. Arif, et al., Appl. Phys. Lett. 91, 091110 (2007).

    Article  Google Scholar 

  14. C.K. Tan, et al., Nat. Nanotechnol. 10, 107 (2015).

    Article  Google Scholar 

  15. J.Y. Chang, Y.A. Chang, F.M. Chen, Y.T. Kuo, and Y.K. Kuo, IEEE Photon Technol. Lett. 25, 55 (2013).

    Article  Google Scholar 

  16. G.Y. Liu, et al., IEEE Photonics J. 220, 2013 (1011).

    Google Scholar 

  17. H. Zhao, et al., Opt. Quant. Electron. 40, 301 (2008).

    Article  Google Scholar 

  18. H. Zhao, et al., IEEE J. Quantum Electron.. 45, 66 (2009).

  19. J.Y. Chang, M.C. Tsai, and Y.K. Kuo, Opt. Lett. 35, 1368 (2010).

    Article  Google Scholar 

  20. C.S. Xia, Z.M. Simon Li, W. Lu, Z.H. Zhang, and L.W. Cheng, Appl. Phys. Lett. 99, 233501-1 (2011)

  21. S.M. Zeng, G.H. Fan, and S.W. Zheng, et al., Appl. Phys. A 119, 971 (2015).

    Article  Google Scholar 

  22. S. Choi, et al., Appl. Phys. Lett. 96, 221105 (2010).

    Article  Google Scholar 

  23. S.J. Lee, C.Y. Cho, S.H. Hong, S.H. Han, S. Yoon, S.T. Kim, and S.J. Park, IEEE Photonics Technol. Lett. 24, 1991 (2012).

    Article  Google Scholar 

  24. Crosslight APSYS and technical manuals. Crosslight Software, Inc., Burnaby, Canada. http://www.crosslight.com

  25. Y.Y. Zhang and Y.A. Yin, Appl. Phys. Lett. 99, 221103 (2011).

    Article  Google Scholar 

  26. Y.K. Kuo, M.C. Tsai, S.H. Yen, T.C. Hsu, and Y.J. Shen, IEEE J. Quantum Electron. 46, 1214 (2010).

    Article  Google Scholar 

  27. J.Y. Chang, M.C. Tsai, and Y.K. Kuo, Opt. Lett. 35, 1368 (2010).

    Article  Google Scholar 

  28. J.Y. Xiong, S.W. Zheng, and G.H. Fan, IEEE Trans. Electron Devices 60, 3925 (2013).

    Article  Google Scholar 

  29. K.T. Delaney, et al., Appl. Phys. Lett. 94, 191109 (2009).

    Article  Google Scholar 

  30. C.K. Tan, et al., J. Disp. Technol. 9, 272 (2013).

    Article  Google Scholar 

  31. J. Lveland et al, Phys. Rev. Lett. 110, 177406 (2013).

  32. C.K. Tan, et al., J. AIP Adv. 5, 017129 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant No. 61176043) and the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong, China (Grant Nos. 2012A080304016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Han Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, SM., Fan, GH. & Zheng, SW. Advantages of Blue InGaN Light-Emitting Diodes with a Mix of AlGaN and InGaN Quantum Barriers. J. Electron. Mater. 44, 3253–3258 (2015). https://doi.org/10.1007/s11664-015-3886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3886-2

Keywords

Navigation