Skip to main content
Log in

Enhanced Dielectric Properties and High-Temperature Microwave Absorption Performance of Zn-Doped Al2O3 Ceramic

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To improve the dielectric and microwave absorption properties of Al2O3 ceramic, Zn-doped Al2O3 ceramic was prepared by conventional ceramic processing. X-ray diffraction analysis confirmed that Zn atoms successfully entered the Al2O3 ceramic lattice and occupied Al sites. The complex permittivity increased with increasing Zn concentration, which is mainly attributed to the increase in charged vacancy defects and densification of the Al2O3 ceramic. In addition, the temperature-dependent complex permittivity of 3% Zn-doped Al2O3 ceramic was determined in the temperature range from 298 K to 873 K. Both the real and imaginary parts of the complex permittivity increased monotonically with increasing temperature, which can be ascribed to the shortened relaxation time and increasing electrical conductivity. The increased complex permittivity leads to a great improvement in microwave absorption. In particular, when the temperature is up to 873 K, the 3% Zn-doped Al2O3 ceramic exhibited the best absorption performance with a maximum peak (−12.1 dB) and broad effective absorption bandwidth (reflection loss less than −10 dB from 9.3 GHz to 12.3 GHz). These results reveal that Zn-doped Al2O3 ceramic is a promising candidate for use as a kind of high-temperature microwave absorption material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Vinoy and R.M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Norwell Boston: Kluwer Academic, 1996), pp. 10.

  2. W.S. Chin and D.G. Lee, Compos. Struct. 77, 457 (2007).

    Article  Google Scholar 

  3. S. Vinayasree, M.A. Soloman, V. Sunny, P. Mohanan, P. Kurian, and M.R. Anantharaman, Compos. Sci. Technol. 82, 69 (2013).

    Article  Google Scholar 

  4. A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, and S.A.A. Hamid, J. Appl. Phys. 92, 876 (2002).

    Article  Google Scholar 

  5. G.R. Gordani, A. Ghasemi, and A. Sadi, J. Magn. Magn. Mater. 363, 49 (2014).

    Article  Google Scholar 

  6. W.P. Li, L.Q. Zhu, J. Gu, and H.C. Liu, Compos. B 42, 626 (2011).

    Article  Google Scholar 

  7. Z.J. Song, J.L. Xie, P.H. Zhou, X. Wang, T. Liu, and L.J. Deng, J. Alloys Compd. 551, 677 (2013).

    Article  Google Scholar 

  8. J.B. Kim, S.K. Lee, and C.G. Kim, Compos. Sci. Technol. 68, 2909 (2008).

    Article  Google Scholar 

  9. D. Micheli, C. Apollo, R. Pastore, and M. Marchetti, Compos. Sci. Technol. 70, 400 (2010).

    Article  Google Scholar 

  10. D. Micheli, A. Vricella, R. Pastore, and M. Marchetti, Carbon 77, 756 (2014).

    Article  Google Scholar 

  11. B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, and M.M. Lu, et al., Carbon 65, 124 (2013).

    Article  Google Scholar 

  12. Y.G. Xu, L.M. Yuan, J. Cai, and D.Y. Zhang, J. Magn. Magn. Mater. 343, 239 (2013).

    Article  Google Scholar 

  13. S. Martinović, M. Vlahović, T. Boljanac, and J. Majstorović, Compos. B 60, 400 (2014).

    Article  Google Scholar 

  14. S. Mishra, R. Raniana, and K. Balasubramanian, J. Alloys Compd. 524, 83 (2012).

    Article  Google Scholar 

  15. T. Shimizua, K. Matsuurab, H. Furuea, and K. Matsuzaka, J. Eur. Ceram. Soc. 33, 3429 (2013).

    Article  Google Scholar 

  16. X.F. Zhang, K.S. Zhou, X. Wei, B.Y. Chen, J.B. Song, and M. Liu, Ceram. Int. 40, 12703 (2014).

    Article  Google Scholar 

  17. A. Comitea, E.S. Cozzaa, G. Di Tannac, C. Mandolfinob, F. Milellac, and S. Vicinia, Prog. Org. Coat. (2014). doi:10.1016/j.porgcoat.2014.10.001.

    Google Scholar 

  18. G. Shanmugavelayutham and A. Kobayashi, Mater. Chem. Phys. 103, 283 (2007).

    Article  Google Scholar 

  19. C. Gao and J.T. Yuan, J. Mater. Process. Technol. 211, 1719 (2011).

    Article  Google Scholar 

  20. A. Krell, J. Klimke, and T. Hutzler, J. Eur. Ceram. Soc. 29, 275 (2009).

    Article  Google Scholar 

  21. Y. Wang, F. Luo, L. Zhang, D.M. Zhu, and W.C. Zhou, Ceram. Int. 39, 8723 (2014).

    Article  Google Scholar 

  22. D.L. Zhao, F. Luo, and W.C. Zhou, J. Alloys Compd. 490, 190 (2010).

    Article  Google Scholar 

  23. Z.M. Li, W.C. Zhou, X.L. Su, F. Luo, Y.X. Huang, and C. Wang, J. Alloys Compd. 509, 973 (2011).

    Article  Google Scholar 

  24. A. Ahmed, A. Ahmed, Z.A. Tailib, M.Z. Hussein, and A. Zakaria, J. Solid State Chem. 191, 271 (2012).

    Article  Google Scholar 

  25. B. Khumpaitool and J. Khemprasit, Mater. Lett. 65, 1053 (2011).

    Article  Google Scholar 

  26. K. Maca, V. Pouchlý, K. Bodišová, P. šuančárek, and D. Galusek, J. Eur. Ceram. Soc. 34, 4363 (2014).

    Article  Google Scholar 

  27. S.X. Zhang, J.B. Li, J. Cao, H.Z. Zhai, and B. Zhang, J. Eur. Ceram. Soc. 21, 2931 (2001).

    Article  Google Scholar 

  28. Z.Z. Guan, Z.T. Zhang, and J.S. Jiao, Physical Properties of Inorganic Materials (Beijing: Tsinghua University Publishers, 1992), p. 330

  29. M. Tardío, R. González, R. Ramírez, and E. Alves, Methods Phys. Res. Sect. B 266, 2932 (2008).

    Google Scholar 

  30. M. Tardío, I. Colera, R. Ramírez, and E. Alves, Methods Phys. Res. Sect. B 268, 2874 (2010).

    Google Scholar 

  31. B. Savoini, M. Tardío, R. Ramírez, and E. Alves, Methods Phys. Res. Sect. B 286, 184 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Luo, F., Wei, P. et al. Enhanced Dielectric Properties and High-Temperature Microwave Absorption Performance of Zn-Doped Al2O3 Ceramic. J. Electron. Mater. 44, 2353–2358 (2015). https://doi.org/10.1007/s11664-015-3787-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3787-4

Keywords

Navigation