Skip to main content
Log in

Multi-role of Sodium Doping in BiCuSeO on High Thermoelectric Performance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, Na-doped BiCuSeO thermoelectric materials have been prepared and the effect of Na doping on their microstructure and thermoelectric properties has been studied. When the doping content is less than 6%, all Na+ can dissolve into the matrix and substitute for Bi3+ sites and play a role of acceptor; when the content is above 6%, the substitution saturates and excessive doping results in the formation of Na2CO3 and Na2SeO3 secondary phases. On the one hand, the doping of Na+ for Bi3+ can significantly improve the electrical properties due to the significant increase of carrier concentration. Furthermore, the phonon and total thermal conductivity also decrease with Na doping because of the dual phonon scattering by the point defects and secondary phases both resulting from Na+ doping. As a result, the thermoelectric performance is enhanced, and a maximum ZT value of 0.97, which is approximately triple that of the undoped BiCuSeO, is achieved at 873 K for the Bi0.92Na0.08CuSeO sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357–376 (2010).

    Article  Google Scholar 

  3. J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, NPG Asia Mat. 2, 152–158 (2010).

    Article  Google Scholar 

  4. J.P. Heremans, C.M. Thrush, M.P. Walsh, and D.T. Morelli, Phys. Rev. B 70, 115334 (2004).

    Article  Google Scholar 

  5. G.A. Slack, in CRC Handbook of Thermoelectrics (eds. D.M. Rowe), CRC press, USA 1995, Ch. 6.

  6. J. He, L.D. Zhao, J.C. Zheng, J.W. Doak, H. Wu, H.Q. Wang, Y. Lee, C. Wolverton, M.G. Kanatzidis, and V.P. Dravid, J. Am. Chem. Soc. 135, 4624 (2013).

    Article  Google Scholar 

  7. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 1043, 19 (2007).

    Google Scholar 

  8. F. Li, J.F. Li, L.D. Zhao, K. Xiang, Y. Liu, B.P. Zhang, Y.H. Lin, C.W. Nan, and H.M. Zhu, Energy Environ. Sci. 5, 7188–7195 (2012).

    Article  Google Scholar 

  9. Y.L. Pei, F. Li, J.F. Li, Q.J. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, and J.Q. Zhao, NPG Asia Mater. 5, e47 (2013).

    Article  Google Scholar 

  10. J.L. Lan, B. Zhan, Y.C. Liu, B. Zheng, Y. Liu, Y.H. Lin, and C.W. Nan, Appl. Phys. Lett. 102, 123905 (2013).

    Article  Google Scholar 

  11. F. Li, T.R. Wei, F. Kang, and J.F. Li, J. Mater. Chem. A 1, 11942–11949 (2013).

    Article  Google Scholar 

  12. C. Barreteau, D. Berardan, E. Amzallag, L.D. Zhao, and N. Dragoe, Chem. Mater. 24, 3168–3178 (2012).

    Article  Google Scholar 

  13. J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L.D. Zhao, Energy Environ. Sci. 5, 8543–8547 (2012).

    Article  Google Scholar 

  14. L. Pan, D. Berardan, L.D. Zhao, C. Barreteau, and N. Dragoe, Appl. Phys. Lett. 102, 023902 (2013).

    Article  Google Scholar 

  15. Y. Liu, L.D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B.P. Zhang, D. Berardan, N. Dragoe, Y.H. Lin, C.W. Nan, J.F. Li, and H. Zhu, J. Am. Chem. Soc. 133, 20112–20115 (2011).

    Article  Google Scholar 

  16. J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.D. Zhao, DOI: 10.1039/c3ta14532h.

  17. G. Li, J.Y. Yang, Y.B. Luo, Y. Xiao, L.W. Fu, M. Liu, and J.Y. Peng, J. Am. Ceram. Soc. 96, 2703–2705 (2013).

    Article  Google Scholar 

  18. T.J.B. Holland and S.A.T. Redfern, Mineral. Mag. 61, 65 (1997).

    Article  Google Scholar 

  19. H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano, and H. Hosomo, Chem. Mater. 20, 326 (2008).

    Article  Google Scholar 

  20. C.L. Wan, W. Pan, Q. Xu, Y.X. Qin, J.D. Wang, Z.X. Qu, and M.H. Fang, Phys. Rev. B: Condens. Matter Mater. Phys. 74, 144109 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyou Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Yang, J., Jiang, Q. et al. Multi-role of Sodium Doping in BiCuSeO on High Thermoelectric Performance. J. Electron. Mater. 44, 2849–2855 (2015). https://doi.org/10.1007/s11664-015-3700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3700-1

Keywords

Navigation