Skip to main content
Log in

Thermal Conductivity of MWNT–Epoxy Composites by Transient Thermoreflectance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Multiwall nanotube composites with epoxy matrix were synthesized by sonication. Thermal conductivity of the composite samples was determined by a transient thermoreflectance method using indium film as a transducer. The thermal conductivity normal to the surface followed percolation behavior. The presence of higher mass fraction of MWNTs near the surface, and the higher purity and the larger aspect ratio of MWNTs were found to be responsible for significant improvement in thermal conductivity of the composites. The barrier to conduction was found to be the width of the epoxy film separating the MWNTs. Modeling analysis showed that the interface thermal conductance between MWNTs is fairly large and is not a limiting factor for the improvement in the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Brown, H. Ling, J.C. Gallop, and J.C. Macfarlane, Appl. Phys. Lett. 87, 23107 (2005).

    Article  Google Scholar 

  2. P.R. Bandaru, J. Nanosci. Nanotechnol. 7, 1 (2007).

    Article  Google Scholar 

  3. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. B 323, 67 (2002).

    Article  Google Scholar 

  4. E. Pop, D. Mann, W. Qian, K.E. Goodson, and D. Hongjie, Nano Lett. 6, 5 (2006).

    Article  Google Scholar 

  5. P. Bonnet, D. Sireude, B. Garnier, and O. Chauvet, Appl. Phys. Lett. 91, 201910 (2007).

    Article  Google Scholar 

  6. C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, Appl. Phys. Lett. 84, 4248 (2004).

    Article  Google Scholar 

  7. C.W. Nan, Z. Shi, and Y. Lin, Chem. Phys. Lett. 375, 666 (2003).

    Article  Google Scholar 

  8. S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, and D.G. Cahill, J. Appl. Phys. 95, 8136 (2004).

    Article  Google Scholar 

  9. A. Yu, M.E. Itkis, E. Bekyarova, and R.C. Haddon, Appl. Phys. Lett. 89, 133102 (2006).

    Article  Google Scholar 

  10. S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Appl. Phys. Lett. 85, 2229 (2004).

    Article  Google Scholar 

  11. Y.A. Kim, S. Kamio, T. Tajiri, T. Hayashi, S.M. Song, M. Endo, M. Terrones, and M.S. Dresselhaus, Appl. Phys. Lett. 90, 93125 (2007).

    Article  Google Scholar 

  12. T. Tao, Z. Yang, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, IEEE Trans. Compon. Packag. Technol. 30, 92 (2007).

    Article  Google Scholar 

  13. R. Prasher, Proc. IEEE 94, 1571 (2006).

    Article  Google Scholar 

  14. M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson, ASME J. Heat Transfer 130, 05241 (2008).

    Article  Google Scholar 

  15. H. Zhong and J.R. Lukes, Phys. Rev. B 74, 125403 (2006).

    Article  Google Scholar 

  16. R. Prasher, X.J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, and P. Keblinski, Phys. Rev. Lett. 102, 105901 (2009).

    Article  Google Scholar 

  17. J. Yang, S. Waltermire, Y. Chen, A.A. Zinn, T.T. Xu, and D. Li, Appl. Phys. Lett. 96, 023109 (2010).

    Article  Google Scholar 

  18. S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P.A. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski, Nature Mater. 2, 731 (2003).

    Article  Google Scholar 

  19. M.B. Bryning, D.E. Milkie, M.F. Islam, J.M. Kikkawa, and A.G. Yodh, Appl. Phys. Lett. 87, 161909 (2005).

    Article  Google Scholar 

  20. N. Shenogina, S. Shenogin, L. Xue, and P. Keblinski, Appl. Phys. Lett. 87, 133106 (2005).

    Article  Google Scholar 

  21. G.D. Liang and S.C. Tjong, Mater. Chem. Phys. 100, 132 (2006).

    Article  Google Scholar 

  22. E. Kymakis and G.A.J. Amartunga, J. Appl. Phys. 99, 084302 (2006).

    Article  Google Scholar 

  23. A.V. Kyrylyuk, C. Hermant, and T. Schilling, Nat Nanotechnology 6, 364 (2011).

    Article  Google Scholar 

  24. M. Brown and K. Jagannadham, J. Compos. Mat. 47, 3413 (2013).

    Article  Google Scholar 

  25. M. Russ, S. Rahatekar, K. Koziol, H.-X. Peng, and B. Farmer, 18th International Conference on Composite Materials, pp. 1–6, 2011, ICCM18, Jeju, Korea.

  26. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, and J.E. Fischer, Appl. Phys. Lett. 80, 2767 (2002).

    Article  Google Scholar 

  27. S.-Y. Yang, C.-C.M. Ma, C.-C. Teng, Y.-W. Huang, S.-H. Liao, Y.-L. Huang, H.-W. Tien, T.-M. Lee, and K.-C. Chiou, Carbon 48, 592 (2010).

    Article  Google Scholar 

  28. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.K. Kinloch, W. Bauhofer, A.W. Windle, and K. Schulte, Polymer 47, 2036 (2006).

    Article  Google Scholar 

  29. B.-W. Kim, S.-H. Park, R.S. Kapadia, and P.R. Bandaru, Appl. Phys. Lett. 102, 243105 (2013).

    Article  Google Scholar 

  30. D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).

    Article  Google Scholar 

  31. H. Zheng and K. Jaganandham, J. Electron. Materials 43, 320 (2014).

    Article  Google Scholar 

  32. K. Jaganandham, J. Vac. Sci. Technol. A 32, 051101 (2014).

    Article  Google Scholar 

  33. F. Deng, Q.-S. Zheng, L.-F. Wang, and C.-W. Nan, Appl. Phys. Lett. 90, 021914 (2007).

    Article  Google Scholar 

  34. J.O. Aguilar, J.R. Bautista Quijano, and F. Aviles, Exp. Polym. Lett. 4, 292 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannadham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, M., Jagannadham, K. Thermal Conductivity of MWNT–Epoxy Composites by Transient Thermoreflectance. J. Electron. Mater. 44, 2624–2630 (2015). https://doi.org/10.1007/s11664-015-3669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3669-9

Keywords

Navigation